2019 Progress for applying genomic tools to accelerate breeding for disease resistance in confection sunflower

Guojia Ma¹, Xuehui Li¹, Lili Qi²

¹NDSU – Plant Sciences, Fargo, ND

²USDA-ARS, NCSL, Fargo, ND

NSA Research Forum 01-08-2020

Outline

- Background knowledge (DM, *R*-genes, *etc*.)
- Research objectives
- Research progress
 - Updates of Pl₁₇ and Pl₁₉ fine mapping
 - Saturation mapping of DM R-gene Pl₁₈
 - Pl₁₈ recombinant screening
 - Fine mapping of Pl₁₈
- Future work
- Acknowledgements

Downy mildew

• Plasmopara halstedii

(Photo by Markell and Gong)

- Incidence: 16% of 2015 and 9% of 2017 (NSA surveys)
- Development of resistant hybrids is most effective management tool (economic & environmental)

DM threats sunflower production

- New DM races are emerging, making current DM *R*-genes ineffective
- Potential threat to sunflower production
 ➢ Gilley (2014-2015) identified only five *R*-genes (*Pl_{Arg}*, *Pl₁₅*, *Pl₁₇*, *Pl₁₈*, and *Pl₃₃*) were resistant to 185 DM isolates collected in ND, SD, MN, NE
- New DM *R*-gene is continuously needed
 (*Pl*₁₉, *Pl*₂₀, *Pl*₃₃, *Pl*₃₄, *Pl*₃₅, and more)

Research objectives 2017-2019

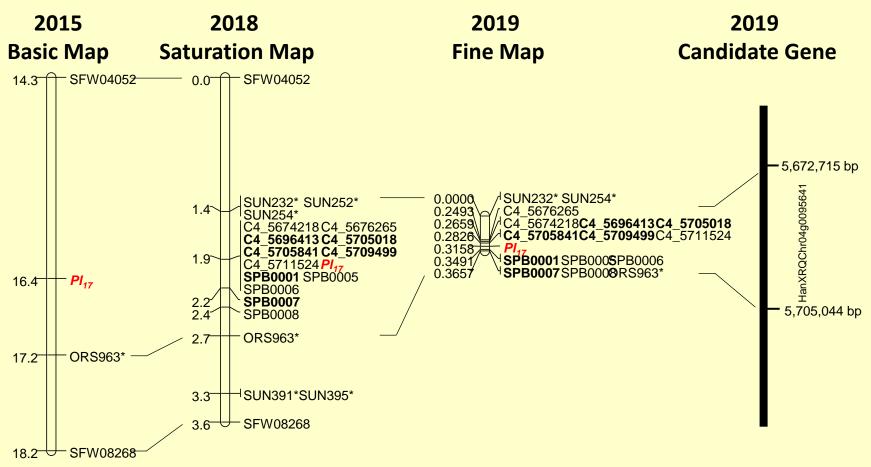
- Analyze allelic relationships of the two DM R-genes, Pl₁₇ and Pl₁₉
- Conduct high-resolution genetic and physical mapping of Pl₁₇, Pl₁₉, and Pl₁₈
- Identify candidate genes of DM resistance
- Develop user-friendly markers of these DM *R*-genes

Research objectives 2019

- Analyze allelic relationships of the two new DM *R*-genes, *Pl*₁₇ and *Pl*₁₉
- Conduct high-resolution genetic and physical mapping of *Pl*₁₇, *Pl*₁₉, and *Pl*₁₈
- Identify candidate genes of DM resistance
- Develop user-friendly markers of these DM *R*-genes

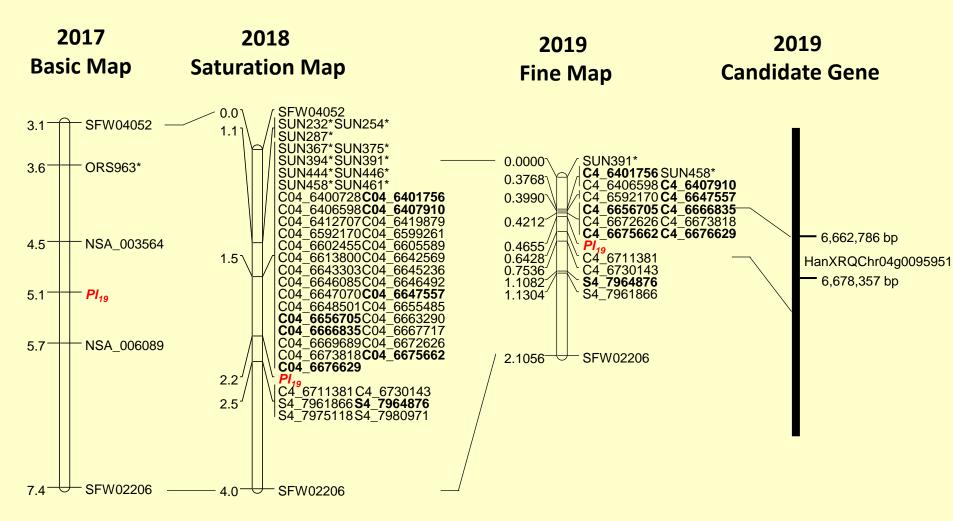
Updates of $PI_{17} \& PI_{19}$

SCIENTIFIC REPORTS


natureresearch

OPEN Molecular dissection of resistance gene cluster and candidate gene identification of Pl_{17} and Pl_{19} in sunflower by whole-genome resequencing

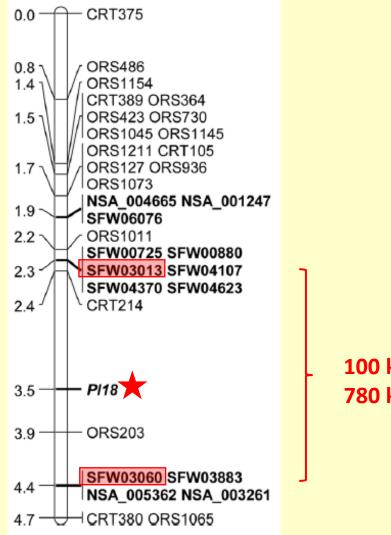
Guojia Ma¹, Qijian Song², William R. Underwood³, Zhiwei Zhang^{1,4}, Jason D. Fiedler³, Xuehui Li¹ & Lili Qi^{3*}


Scientific Reports (2019) 9:14974 (https://doi.org/10.1038/s41598-019-50394-8)

Update of *Pl*₁₇

- 6 diagnostic SNP markers for MAS
- Candidate gene for *Pl*₁₇ was identified, and functional analyses are underway (Dr. Md Shamimuzzaman)

Update of *Pl*₁₉


- 9 diagnostic SNP markers for MAS
- Candidate gene for *Pl*₁₉ was identified, and candidacy needs validation

DM R-gene Pl₁₈

	PI ₁₈
Publication	Qi et al., 2015, TAG
Resistance origin	H. argophyllus (PI 494573), Texas
Chromosome location	Linkage Group 2
Resistance	All races identified in U.S.
Released germplasm	Oil: HA-DM1 (2015) <i>, Pl₁₈</i> Confectionary: HA-DM4 (2017) <i>, Pl₁₈+R_{13a}</i>

- Broad-spectrum and new resistance
- Long-term mission: making the *R*-genes easier to use (breederfriendly markers)
 - Closer markers (best would be *R*-gene itself)
 - More unique markers

Position of *Pl*₁₈ LG 2

100 kb in HA412-HO; 780 kb in XRQ

Qi et al., 2015, TAG

Saturation mapping of Pl₁₈

- STEP 1-sequence-based SSR marker development
 - Pl₁₈ was delimited to 100-kb and 780-kb regions on LG2 of HA412-HO and XRQ, respectively
 - 100 and 200 kb genomic sequences of HA412-HO and XRQ were extracted from database
 - 28 pairs of SSR primers were designed
 - Polymorphism screening between HA 89/PI 494573
 (*Pl*₁₈)
 - Genotyped 142 F₂ individuals with 16 polymorphic SSR markers

Saturation mapping of *Pl*₁₈

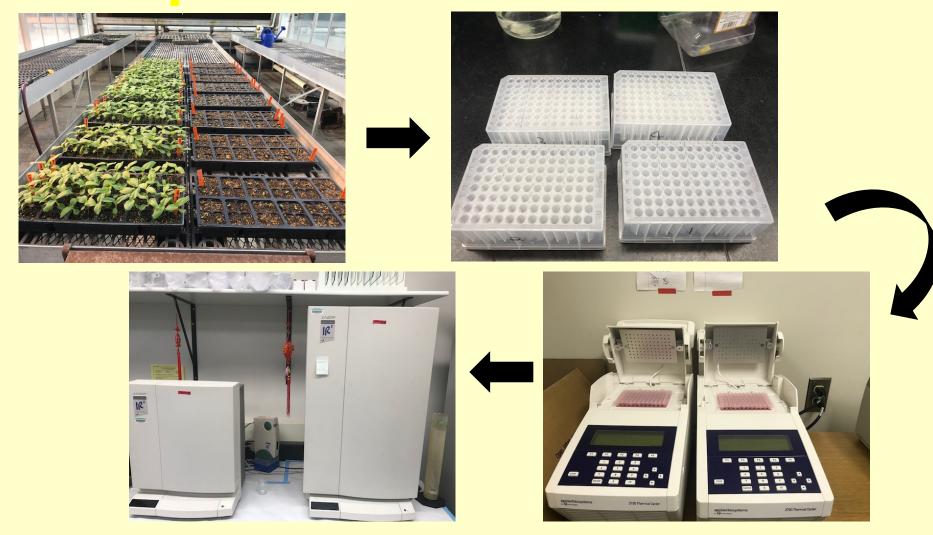
- STEP 2-sequence-based SNP marker development
 - HA-DM1 (Pl₁₈) was whole genome re-sequenced at 40× coverage
 - Whole genome sequence was aligned with two reference genomes, and variants (SNPs & InDels) were called
 - 150 SNPs/InDels potentially around Pl₁₈ were chosen (101 from XRQ and 49 from HA412-HO)
 - Genotyped 142 F₂ individuals with 43 polymorphic SNP markers
- Outcome: 43 SNP markers were mapped around Pl₁₈, reducing gene interval to 12 kb for both references

100 kb in HA412-HO & 780 kb in XRQ

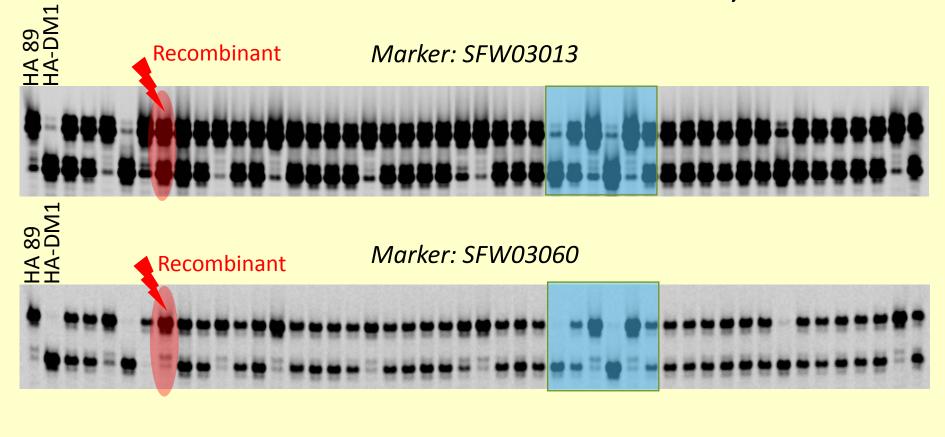
 PI_{1}

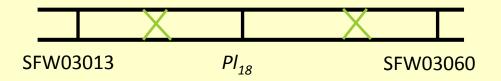
 PI_{18}

LG 2


<u>SSR</u> marker development from reference seq

<u>SNP</u> marker development from whole genome re-sequencing


12 kb (both in the HA412-HO & XRQ genome assemblies)


Recombinant selection of Pl₁₈

A total of 2,904 F₂ individuals were tested with flanking markers

Recombinant selection of Pl₁₈, cont'd

Recombinants were advanced for further progeny tests

Fine mapping of *Pl*₁₈

- 78 recombinants were detected from large
 F₂ pop (2,904 plants) with two flanking
 markers
- Phenotyping 78 recombinants
- Genotyping 78 recombinants with previous 43 mapped SNP markers
- Linkage analysis between genotyping and phenotyping data for fine mapping

Future work (2020)

- Finish fine mapping of *Pl*₁₈
- Test and validate diagnostic markers for *Pl*₁₈
- Identify candidate gene of *Pl*₁₈
- Prepare manuscript

Acknowledgements

- Angelia Hogness (USDA-ARS, NCSL)
- Dr. Zahirul Talukder (NDSU/USDA-ARS, NCSL)
- Dr. Md Shamimuzzaman (USDA-ARS, NCSL)
- Dr. Qijian Song (USDA-ARS, BARC)
- Dr. William Underwood (USDA-ARS, NCSL)
- Dr. Loren Rieseberg (UBC)
- Dr. Sariel H
 übner (MIGAL Institute, Israel)
- **Financial Support**
- National Sunflower Association
- Specialty Crop Block Grant, USDA-AMS
- ND Department of Agriculture

