

A new male-sterile Helianthus tuberosus cytoplasm and its fertility restoration gene providing alternatives for hybrid sunflower production

Zhao Liu§, Dexing Wang§ §, Jiuhuan Feng§, Gerald J. Seiler®, Xiwen Cai§, Chao-Chien Jan®

§North Dakota State University

§ §Liaoning Academy of Agricultural Sciences

*USDA-ARS, NCSL

Liu et al. Genetics 2013 (in press)

Introduction

- For over 40 years, the hybrid sunflower seed industry has largely relied on CMS PET-1and its corresponding Rf₁ gene
- Alternative CMS/Rf systems could expand the diversity of the sunflower crop, and reduce the risks inherent with using a single CMS/Rf system
- 72 sunflower CMS sources have been identified, but only about a half of them have known corresponding Rf genes
- Only 7 Rf genes have been mapped

The Rf genes and their position on linkage group

Gene	CMS type	Linkage group (LG)
Rf_1 , Rf_5	CMS PET-1	13
Msc ₁	CMS PET-1	12 of the RFLP map of Gentzbittel et al. (1999)
<i>Rf₃</i> -RHA 340, <i>Rf₃</i> -RHA 280	CMS PET-1	7
Rf_4	CMS GIG2	3
<i>Rf</i> -PEF1	CMS PEF1	an AFLP LG that differed from 13

Introduction (cont.)

- Amphiploids, derived from chromosomally doubled interspecific or intergeneric crosses, have been used as an important "bridge" for transferring different genes
- Recently, CMS 514A, derived from the cross between H. tuberosus and an inbred line 7718B, was developed at the Liaoning Academy of Agricultural Sciences, Liaoning, China

No restorer for CMS 514A was found with 33 maintainer and restorer lines

Material Source	Number	To CMS PET-1	To CMS 514A
Italy	6	R	В
Italy	5	В	В
China	13	R	В
China	2	В	В
U.S.A	4	R	В
U.S.A	1	В	В
France	1	R	В
Australia	1	R	В

No restorer for CMS 514A was found with the 20 tester lines from USDA-ARS-NCSL

Material	Plant No.	Sterile No.	Material	Plant No.	Sterile No.
514A / HA 821	44	44	514A / RHA 294	21	21
514A / HA 801	21	21	514A / Armavir	39	39
514A / Seneca	18	18	514A / VNIIMK	37	37
514A / Hopi Dye	30	30	514A / P21	32	32
514A / Smena	38	38	514A / RCMG3	46	46
514A / Luch	37	37	514A / RHA 290	47	47
514A / Issanka	42	42	514A / HA 89	36	36
514A / RHA 266	42	42	514A / RCMG1	39	39
514A / RHA 276	36	36	514A / RCMG2	47	47
514A / RHA 274	32	32	514A / Peredovik	46	46

Objectives

- Identify the Rf gene for CMS 514A
- Introgress the Rf gene into a cultivated sunflower background and study the inheritance of the Rf gene
- Characterize the alien chromosome or segments in the progenies
- Map the Rf gene using SSR and EST-SSR markers

Materials and Methods

Five interspecific amphiploids (2n=68)

Amp *H. atrorubens*/HA 89

Amp H. mollis/P 21

Amp H. cusickii/P 21

Amp H. grosseserratus/P 21

Amp H. angustifolius/P 21

F₁ progeny of hexaploid *H. californicus*/HA
 89 (2n=68)

Rf identification

Rf introgression and inheritance

Molecular mapping and characterization

- Mitotic chromosome counting and genomic in situ hybridization (GISH) analysis
- Test populations: derived from G08/598, G08/613, and G08/621

Pedigree: CMS 514A/6/(CMS 514A//Amp *H. angustifolius*/P 21/3/2*HA 89/4/HA 821/5/HA 89 and Self) SIB)

Mapping population: derived from G08/613

Molecular marker screening
 Bulked segregant analysis (BSA)

Bulk F: a homozygous fertile F₂ bulk

Bulk S: a sterile F₂ bulk

Bulk 2n=35: a fertile BC_4F_2 bulk with 2n=35

Bulk 2n=34: a sterile BC₄F₂ bulk with 2n=34

370 pairs of SSR primers

65 SSR and 28 EST-SSR markers from the candidate LG 3 of 23 maps in the Sunflower CMap Database

 Statistical analysis and linkage map construction

Chi-square test

MAPMAKER/Exp version 3.0b (Lander *et al.* 1987)

Results and Discussion

O Identification of the Rf gene in Amp H. angustifolius/P 21, which was designated Rf_6

Cross	Plant No.	Fertile plant No.
514A // Amp <i>H. angustifolius</i> / P 21	13	13
514A // Amp <i>H. grosseserratus</i> / P 21	10	0
514A // H. californicus / HA 89	4	0
514A // Amp of <i>H. atrorubens</i> / HA 89	6	0
514A // Amp of <i>H. mollis</i> / P 21	11	0
514A // Amp of <i>H. cusickii</i> / P 21	6	0

Genetic analysis of the alien chromosome carrying Rf₆

The testcross and selfed progenies of MF plants (2n=35)

Total	2n=34	2n=35	2n=35	2n=36	2n=36
plants	MF:MS	MF:MS	(%)	MF:MS	(%)
59	0:55	4:0	6.8		
59	0:39	20:0	33.9		
116	1:75	25:10	30.2	4:1	4.3
57	1:36	8:9	29.8	2:1	5.3
59	0:39	17:1	30.5	2:0	3.4
	plants 59 59 116	plants MF:MS 59 0:55 59 0:39 116 1:75 57 1:36	plants MF:MS 59 0:55 4:0 59 0:39 20:0 116 1:75 25:10 57 1:36 8:9	plants MF:MS (%) 59 0:55 4:0 6.8 59 0:39 20:0 33.9 116 1:75 25:10 30.2 57 1:36 8:9 29.8	plants MF:MS (%) MF:MS 59 0:55 4:0 6.8 59 0:39 20:0 33.9 116 1:75 25:10 30.2 4:1 57 1:36 8:9 29.8 2:1

Comparison of chromosome spreads of male-fertile (MF) (2n=35) (A) and male-sterile (MS) (2n=34) (B) plants.

The arrow shows the larger chromosome compared to other chromosomes, which is assumed to be the alien chromosome from H. angustifolius carrying Rf_6 . Bars=5 μ m.

Mitotic GISH and cytogenetic analyses

A) a heterozygous MF plant, G08/638 (2n=35); **B)** a heterozygous MF plant (2n=34) derived from G08/613; **C)** a homozygous MF plant (2n=34) derived from G08/621; **E)** a homozygous MF plant (2n=34) derived from G08/598; **F)** an MS plant (2n=34) derived from G08/621; **G)** an abnormal plant derived from G08/621. Bars=5 μm.

Fertility segregation and mapping of Rf₆ on LG 3

Traits or markers	Number of F ₂	Observed number ^a		Ratio	χ^2	<i>P</i> -value		
	plants	Α	Н	В	С	expected		
$Rf_6^{\ b}$	255	89			166	1:3	13.33	2.6 x 10 ⁻⁴
Rf ₆ ^c	221	89	113	19		1:2:1	44.46	2.2 x 10 ⁻¹⁰
ORS822	220	85			135	1:3	21.82	3.0 x 10 ⁶
HT088	220	85	118	17		1:3	43.20	4.9 x 10 ⁻¹¹
ORS433-a	220	82			138	1:3	17.67	2.6 x 10 ⁵
ORS13	220	83	118	19		1:2:1	38.40	4.6 x 10 ⁻⁹
ORS1114	220	83	118	19		1:2:1	38.40	4.6 x 10 ⁻⁹
HT734	220	82	119	19		1:2:1	37.55	7.0 x 10 ⁻⁹
ORS488	220	82	119	19		1:2:1	37.55	7.0 x 10 ⁻⁹
ORS525	221	86			135	1:3	22.82	1.8 x 10 ⁻⁶
ORS433-b ^d	216	58			158	1:3	0.40	0.53

Figure. The position of the fertility restoration gene Rf_6 on LG 3 of the sunflower map. **A**) A partial map of LG 3 of Tang *et al.* (2003); **B**) Mapping result of Rf_6 on LG 3, using 221 F_2 plants; **C**) A partial map of LG 3 of RHA 280 x RHA 801_RIL (in press). Region I indicates the region is not linked to Rf_6 , and Region II indicates the region where the possible break point of the translocation with Rf_6 is located.

The order of the markers were reversed.

Summary

- An Rf gene, Rf₆, was identified to restore the male fertility of CMS 514A, originated from H. angustifolius
- Rf₆ was introgressed into cultivated sunflower. It was located on a small chromosomal translocation
- Rf₆ was located on LG 3 of the sunflower SSR map, with 8 linked markers in a mapping population. The markers ORS13 and ORS1114 were 1.6 cM away

- Severe segregation distortions were observed for both the fertility trait and the linked markers, suggesting the possibility of a low frequency of recombination or gamete selection in this region
- This study discovered a new CMS/Rf gene system and provided significant insight into the genetic basis of this system
- This will diversify the germplasm for sunflower breeding and facilitate understanding of the interaction between the cytoplasm and nuclear genes

Acknowledgments

- Lisa A. Brown
- Ridhima Katyal
- Jordan Hogness
- Alexis Ganser
- Yuni Chen
- Marjorie A. Olson

- Or. Larry G. Campbell
- Or. Lili Qi
- Dr. Prem P. Jauhar
- Or. Steven S. Xu
- Or. Brady A. Vick

- Dr. Chengsong Zhu (Kansas State University)
- Dr. Wentao Li (University of California-Davis)
- Dr. Zahirul Talukder (North Dakota State University)
- Dr. Yunming Long (North Dakota State University)