Molecular mapping of new downy mildew resistance genes, PI_{37} and PI_{38} , in sunflower

Lili Qi¹, Zahirul Talukdar¹, Guojia Ma^{2*}, Gerald Seiler¹

¹USDA-ARS, Edward T. Schafer Agricultural Research Center ²NDSU, Dept. of Plant Sciences

*Current address: Ball Horticultural Company, 622 Town Road, West Chicago, IL 60185, USA

Background

Main causal organism: Plasmopara halstedii, the most destructive foliar disease in sunflower

Fig. 1a Chlorosis on upper leaf surface

Fig. 1b Abundant white sporulation on leaf surface

Fig. 2 Stunting of downy mildew infected sunflower plants (in yellow oval) as compared to healthy plants.

Background-cont.

- Prior to 1980, only two DM races were known, one each in Europe and North America
- To date, at least 24 DM races were identified in Europe and 40 races in North America
- Control: Registered fungicides and host resistance
- Host resistance provides an economically and environmentally friendly method of controlling downy mildew

Background-cont.

- A total of 37 DM R genes (Pl₁-Pl₃₆, Pl_{Arg}) have been reported in sunflower
- Many DM R genes in the sunflower gene pool have become ineffective in the field due to ever-changing pathogen populations rendering most of the world's sunflower production susceptible to devastating epidemics
- The identification of new resistance genes is necessary to successfully counter the continuous evolution of the DM pathogen

Materials and Methods

- I. Mapping populations Pop1: BC_1F_2 and BC_1F_3 from the cross of HA 89/H. annuus PI 435417 Pop2: BC_1F_2 and BC_1F_3 from the cross of HA 89/H. praecox PRA-417
- II. DM evaluation of the BC₁F₃ populations Pop1: 140 families (30 seedlings/family) Pop2: 122 families (30 seedlings/family)

Materials and Methods-cont.

III. Genotyping of the BC₁F₂ populations
Pop1: using an Optimal GBS AgriSeqTM
Panel with 768 mapped SNP markers at BDI
Pop2: Genotyping-by-sequencing at UMN

IV. Saturation mapping

Pop1: additional 161 SNPs in the Pl_{37} gene target region Pop2: additional 35 SNPs in the Pl_{38} gene target region

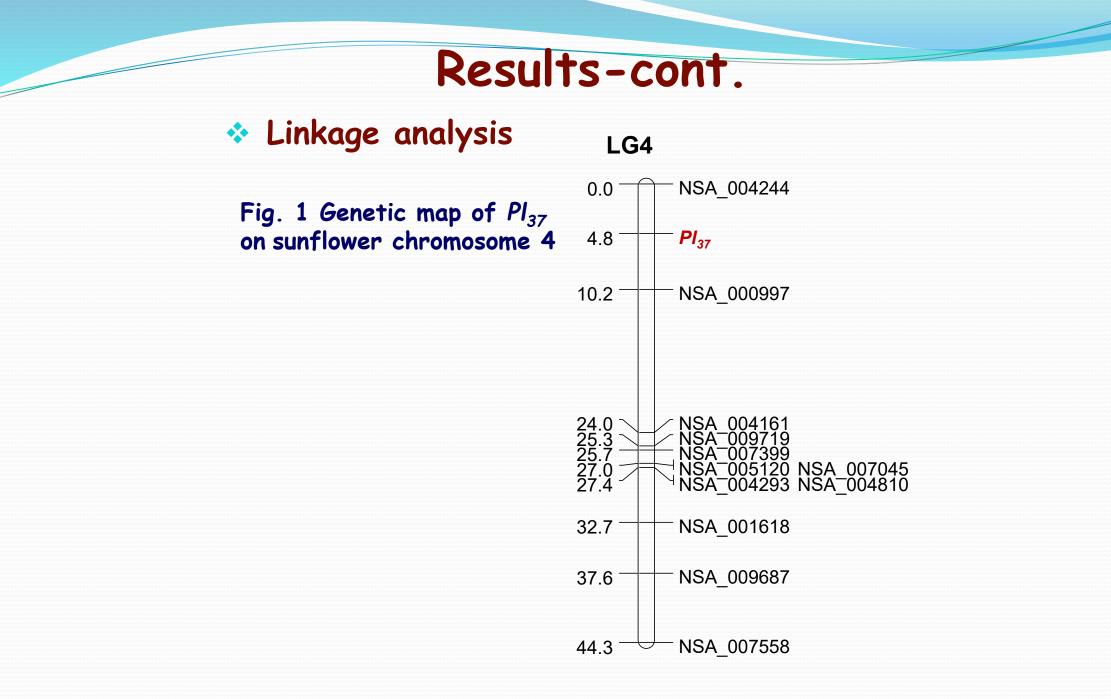
Results

I. Mapping of the DM R gene PI_{37} from the wild H. annus PI 435417

* DM phenotyping A total of 140 BC_1F_3 families were phenotyped with DM hot race 734.

36 homozygous susceptible

72 heterozygous resistant


32 homozygous resistant

The DM resistance derived from PI 435417 is controlled by a single dominant gene named as Pl₃₇

Genotyping of Pop1

Table 1 Distribution of polymorphic SNPs in the sunflower genome in the population of HA 89/H. annuus PI 435417

Chromosome	No. polymorphic SNP
1	3
2	6
3	3
4	12
5	10
6	0
7	3
8	4
9	0
10	5
11	8
12	4
13	0
14	1
15	9
16	9
17	1
Total	78/768

 \Rightarrow Saturation mapping of the PI_{37} region

 PI_{37} was mapped to LG4 close to PI_{17} and PI_{33} . A total of 161 SNPs from the fine maps of PI_{17} and PI_{33} were used to saturate the PI_{37} region and 19 were mapped to PI_{37} target region

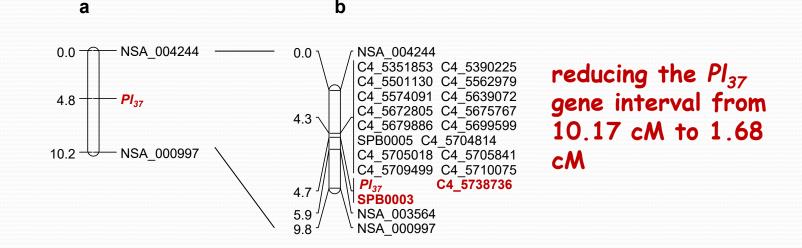


Fig. 2 Genetic maps of PI_{37} on sunflower chromosome 4. a) basic map, b) saturation map

 PI_{37} is different from PI_{17} and PI_{33}

1. A common marker SPB005 is mapped downstream of PI_{17} and PI_{33} , but upstream of PI_{37}

2. The diagnostic marker alleles specific to the PI_{17} and PI_{33} genes were not detected in the plant with PI_{37}

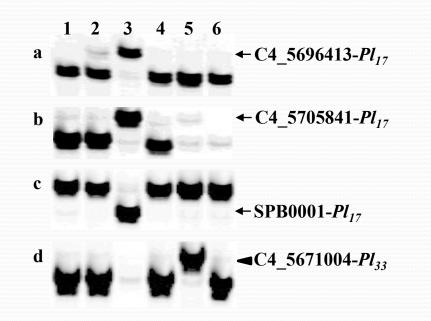
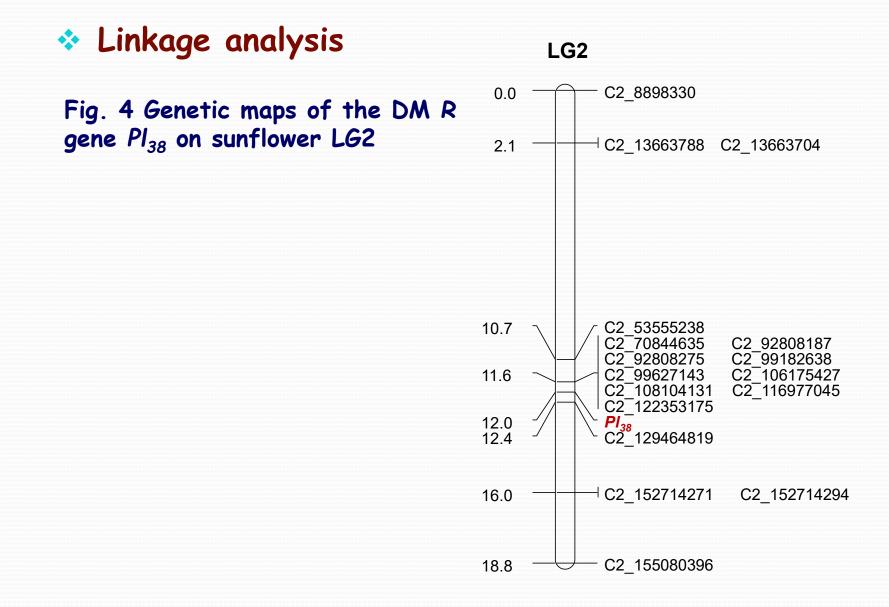


Fig. 3 PCR patterns of SNP markers diagnostic for PI_{17} and PI_{33} in six sunflower lines, HA 434 (lane 1), HA 89 (lane 2), HA 458/ PI_{17} (lane 3), HA-DM5/ PI_{19} (lane 4), TX16R/ PI_{33} (lane 5), and 17-32-33/ PI_{37} (lane 6)


II. Mapping of the DM R gene PI_{38} from the wild H. praecox PRA-417

DM phenotyping A total of 122 BC_1F_3 families were phenotyped with DM hot race 734 28 homozygous susceptible 68 heterozygous resistant 26 homozygous resistant The DM resistance derived from PRA-417 is controlled by a single dominant gene named as **PI**₃₈

Genotyping of Pop2

Table 2 Distribution of polymorphic SNPs in the population of HA 89/H. praecox PRA417 by genotyping-by-sequencing

Chromosome	Total No. of polymorphic SNPs	No. of distorted SNPs/(%)	No. of non-distorted SNPs
1	59	51 (86%)	8
2	997	466 (47%)	531
3	88	78 (89%)	10
4	92	76 (83%)	16
5	115	109 (95%)	6
6	125	70 (57%)	55
7	78	67 (86%)	11
8	247	109 (44%)	138
9	73	70 (96%)	3
10	141	109 (77%)	32
11	61	46 (75%)	15
12	125	65 (52%)	60
13	105	87 (83%)	18
14	166	114 (69%)	52
15	139	101 (73%)	38
16	216	114 (53%)	102
17	173	105 (61%)	68
Total	3000	1837 (61%)	1163

Saturation mapping of the Pl₃₈ region

 PI_{38} was mapped to LG2 close to PI_{18} . A total of 35 SNPs from the public SNP map and PI_{18} fine map were used to saturate the PI_{38} region and 8 were mapped to PI_{38} target region

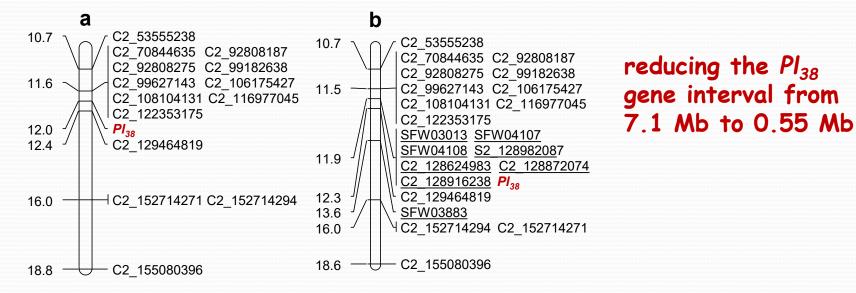


Fig. 5 Genetic maps of PI_{38} on sunflower chromosome 2. a) basic map, b) saturation map, the new SNP markers are underlined

 PI_{38} is different from PI_{18}

1. PI_{38} and PI_{18} locate in a small region on LG2. Out of 23 SNP markers selected from the PI_{18} map, only four markers were mapped to the PI_{38} region

2. The 12 diagnostic marker alleles specific to the PI_{18} genes were not detected in RPA-417 with PI_{38}

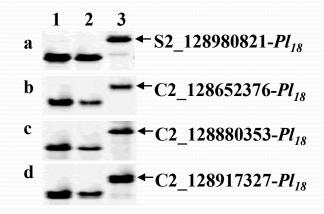


Fig. 6 PCR patterns of the SNP markers diagnostic for PI_{18} in the three sunflower lines, HA 89 (lane 1), RPA-417/ PI_{38} (lane 2), and HA-DM1/ PI_{18} (lane 3)

\diamond Downy mildew resistance spectra of PI_{37} and PI_{38}


Table 3 Downy mildew resistant tests of the homozygous families of PI_{37} and PI_{38} with seven P. halstedii races

		P. halstedii races													
Line	Material	7	00	70	07	7	14	73	30	7	34	77	70	77	74
		S	R	S	R	S	R	S	R	S	R	S	R	S	R
HA 89	S-check	15	0	15	0	14	0	12	0	14	0	18	0	14	0
HA-DM1	R-check	0	15	0	15	0	15	0	13	0	15	0	15	0	12
17-32-177	PI_{37} homo BC ₁ F ₃ family	ο	21	ο	31	ο	29	ο	26	ο	27	ο	19	ο	30
17-32-213	PI_{37} homo BC ₁ F ₃ family	о	28	ο	29	0	30	о	16	ο	18	ο	24	о	30
17-32-249	Pl ₃₇ homo BC1F3 family	ο	20	0	31	0	26	ο	16	ο	15	ο	21	0	12
19-06-3	PI ₃₈ homo plant	о	21	0	30	0	29	о	17	ο	23	ο	23	о	22
19-06-4	PI ₃₈ homo plant	о	27	ο	31	0	29	о	29	ο	28	ο	27	о	30
19-06-5	PI ₃₈ homo plant	0	25	0	28	0	29	0	25	0	27	0	22	0	25

Germplasm development in oilseed sunflower with
 Pl₃₇ or Pl₃₈

1. HA-DM15/Pl₃₇ was selected from the BC_1F_3 population of the cross HA 89//NMS HA 89/H. annus PI 435414

2. HA-DM16/Pl₃₈ was selected from the RF PRA-417 line which was originally derived from CMS HA 89/H. praecox PRA-417

Summary of genetic mapping of 21 R genes (2010-2022)

Table 4 The 10 DM R genes mapped by Qi's lab

	Gene	Linkage Group	R gene donor line	Publications			
	PI ₁₇	4	HA 458	2015 Theor Appl Genet 128:757-767			
	PI ₁₈	2	H. argophyllus PI494573	2016 Theor Appl Genet 129:741-752			
	PI ₁₉	4	H. annuus PI	2017 Theor Appl Genet 130:29-39			
	PI20	8	H. argophyllus PI494573	2017 Theor Appl Genet 130:1519-1529			
	PI ₃₃	13	TX16R	2019 Mol Breeding 39:19			
	PI ₃₄	13	RHA 428	2019 Frontiers in Genetics 10:216			
(PI ₃₅	1	H. argophyllus PI494573	2019 Theor Appl Genet 132:2553-2565			
	PI_{36}	13	803-1	2022 Mol Breeding 42:8			
	PI ₃₇	4	H. annuus PI 435414	2023 Theor Appl Genet (in review)			
	PI38	2	H. praecox PRA-417	2023 Theor Appl Genet (in review)			

Table 5 The 11 rust R genes mapped by Qi's lab

Gene	Linkage Group	R gene donor line	Publications
R4	13	HA-R3	2011 Theor Appl Genet 123:351-358
R ₁₁	13	Rf ANN-1742	2012 Theor Appl Genet 125:921-932
R ₅	2	HA-R2	2012 Mol Breeding 30:745-756
R 12	11	RHA 464	2013 Theor Appl Genet 126:93-99; 2014 PLOS ONE 7:e98628
R 1 3a	13	HA-R6	2013 Theor Appl Genet 126:2039-2049
R 13b	13	RHA 397	2013 Theor Appl Genet 126:2039-2049
R 2	14	MC29	2015 Theor Appl Genet 128:477-488
R 15	8	HA-R8	2018 Theor Appl Genet 31:1423-1432
R 16	13	TX16R	2019 Mol Breeding 39:19
R 17	13	KP193	2022 Theor Appl Genet 134:2291-2301
R 18	13	KP199	2022 Theor Appl Genet 134:2291-2301

Summary of 37 released germplasms (2013-2022)

Table 6 The 12 released germplasms with one R gene from Qi's lab

Name	Туре	Resistance gene	Year released
HA-R9	Oilseed	R ₁₁	01-2013
HA-R10	Confection	R ₅	12-2013
HA-R11	Confection	R ₄	12-2013
HA-R18	Oilseed	R ₁₇	10-2020
HA-R19	Oilseed	R ₁₈	10-2020
HA-DM1	Oilseed	PI ₁₈	06-2015
HA-DM5	Confection	PI ₁₉	06-2017
HA-DM6	Confection	PI ₃₅	07-2019
HA-DM7	Oilseed	PI ₂₀	07-2019
HA-DM8	Oilseed	PI ₃₅	03-2020
HA-DM15	Oilseed	PI ₃₇	in process
HA-DM16	Oilseed	PI ₃₈	in process

Table 7 The 17 released germplasms with multi-R genes from Qi's lab

Name	Type	Resistance gene	Year released
HA-R12	Confection	R_2/R_{13a}	07-2014
HA-R13	Confection	R_{5}/R_{13a}	07-2014
HA-R14	Oilseed	$R_4/R_{12}/PI_{Arg}$	01-2020
HA-R15	Oilseed	$R_5/R_{12}/PI_{Arg}$	01-2020
HA-R16	Oilseed	$R_{13b}/R_{12}/PI_{Arg}$	01-2020
HA-R17	Oilseed	R_{13b}/R_{15}	01-2020
HA-R20	Confection	$R_{12}/R_{15}/PI_{Arg}$	08-2022
HA-R21	Confection	$R_{13a}/R_{15}/PI_{17}$	08-2022
HA-DM2	Confection	Pl _{Arg} /R ₁₂	06-2017
HA-DM3	Confection	PI ₁₇ /R _{13a}	06-2017
HA-DM4	Confection	Pl ₁₈ /R _{13a}	06-2017
HA-DM9	Oilseed	PI ₈ /PI ₁₇	08-2021
HA-DM10	Oilseed	PI ₈ /PI ₁₈	08-2021
HA-DM11	Oilseed	PI ₁₇ /PI ₁₈	08-2021
HA-DM12	Oilseed	$PI_{8}/PI_{Arg}/R_{12}$	08-2021
HA-DM13	Oilseed	$PI_{17}/PI_{Arg}/R_{12}$	08-2021
HA-DM14	Oilseed	$PI_{18}/PI_{Arg}/R_{12}$	08-2021

Table 8 The 8 released germplasms with BSR resistance from Qi's lab

Name	Туре	Resistance gene	Year released
HA-BSR1	Oilseed	BSR resistance from HA441/RHA439	08-2016
HA-BSR2	Oilseed	BSR resistance from <i>H.</i> petiloris + PI_{17}	10-2017
HA-BSR3	Oilseed	BSR resistance from <i>H. argophyllus</i> + Pl ₁₇	10-2017
HA-BSR4	Oilseed	BSR resistance from <i>H.</i> argophyllus + Pl_{17}	10-2017
HA-BSR5	Oilseed	BSR resistance from <i>H. argophyllus</i>	10-2017
HA-BSR6	Oilseed	BSR resistance from <i>H. pracoxes</i> + Pl ₁₇	10-2017
HA-BSR7	Oilseed	BSR resistance from <i>H. pracoxes</i> + Pl ₁₇	10-2017
HA-BSR8	Oilseed	BSR resistance from H. pracoxes + Pl ₁₇	10-2017

Acknowledgment

Angelia Hogness (USDA-ARS, NCSL) Marjorie Olson (USDA-ARS, NCSL)

Financial Support USDA, Agricultural Research Service

