Potential for avoidance of the red sunflower seed weevil in the Northern Great Plains

J. R. Prasifka, S. Pantzke, A. Varenhorst, R. Buetow

Outline

Pest status and the idea of avoidance

- Causes of high populations?
- Effects of 'cultural practices' on crop
- Planting habits in central South Dakota
- Future research and discussion

S. fulvus Primary Insect Pest in North America

- Most damaging seed pest in surveys (ND, SD)
- Common: 67, 69% fields in 2019, 2021
- Severe: up to 30, 76% damage in 2019, 2021
- SD with 2.1–3.4 times damage in ND

- Weevil weaknesses?
- One generation per year
- Host-specific to sunflowers

Avoidance to Manage S. fulvus?

Causes of High Populations?

- Loss of chlorpyrifos
- Resistance to pyrethroids
- ND << SD populations
- Warmer winters
- Limited tillage
- More sunflowers

Causes of High Populations?

- Loss of chlorpyrifos nope, problem was bad before this!
- Resistance to pyrethroids maybe

• <u>ND << SD populations...</u>

- Warmer winters 6 warmest winters since 2012 (NOAA)
- Limited tillage SD no-till up 29% from 2004–2013 (NRCS)
- More sunflowers central SD up 19% for 2012–2017 (NASS)
- Late planting let's come back to this one...

Causes of High Populations? Warm winters...

Between -4°C and -8°C starts killing weevils

- 2019–2020 average soil temp always > 0°C
- Larval survival to emergence = 11.7%

- 2020–2021 February average soil temp -4°C
- Larval survival to emergence = 1.9%

ND sometimes benefits from 'winterkill' (SD less so)

Causes of High Populations? Limited tillage...

- Spink Co. and Brookings Co., SD
- Various tillage treatments
- 1981 = 32–36% fewer adults
- 1982 = 22–39% fewer adults

- 2020–2021 emergence in Fargo, ND
- Fallow = 62 / 3000 larvae
- Spring wheat = 19 / 4000 larvae
- Soil disturbance cut survival > 2/3

Causes of High Populations? More sunflowers...

- Up only ≈ 10%
- But 'packed in'
- New growers?

- 1981–1984, Cass Co., ND (two sites)
- Leonard: May 7 June 18

May 7 = 40% less damage, no oil loss

• Mapleton: May 19 – June 20

May 19 = 25% less damage, minimal (1%) oil loss

 Similar <u>no-insecticide</u> trials near Redfield & Watertown, SD Plantings ≈ May 1 were <10% damage (80% less) Adding short-maturity hybrid down to <3% damage

- Dickinson, 2022
- No insecticides

- Low RSSW levels
- Late July bloom
 w/< 5% damage

• DLRF, 2022

• No insecticides

• <u>High</u> RSSW levels

- May 27 = 23%
- June 3 = 51%
- June 17 = 96%

• DLRF, 2022

• No insecticides

• <u>High</u> RSSW levels

• 'Extra' on May 16 <10%

• 2450 lb/ac

Planting Habits in Central South Dakota

- Data from USDA-RMA
- Reported planting dates (and yields*)
- Hughes, Hyde, Potter and Sully Counties

- Grower-reported
- Not single fields, date is last date for a group

Oilseeds only (most of the data)

Planting Habits in Central South Dakota

Conclusions and Future Research

- Several factors help weevils survive in greater numbers (SD)
- No tactic is a 'cure-all' (early planting <u>or</u> insecticides)

• ND at risk too (100+ weevils / head in RRV in past)

- If you plant early in 2023 or know someone who does, call!
- (...Or if you can host a June-planted RSSW resistance trial)
- Planting date trials 2023 in 4 sites, RSSW, yield, oil % data

Acknowledgements

National Sunflower Association

• USDA-RMA

• Adam Varenhorst (SDSU)

- Sam Ireland (SDSU)
- Ryan Buetow (NDSU)

