EVALUATION OF FUNGICIDES FOR THEIR EFFICACY AGAINST PHOMOPSIS STEM CANKER OF SUNFLOWER USING REMOTE SENSING TECHNOLOGY

RENAN GUIDINI, NATHAN BRAUN, JIYUL CHANG, AND FEBINA MATHEW

AGRONOMY, HORTICULTURE, AND PLANT SCIENCE DEPARTMENT, BROOKINGS, SD 57007

South Dakota State University

College of Agriculture, Food and Environmental Sciences

OUTLINE

- Introduction
 - Phomopsis stem canker
 - Remote sensing technology
- Research
 - Objective
 - Experiment
 - Results
 - Summary
 - Future work

PHOMOPSIS STEM CANKER

Leaf symptoms of Phomopsis stem canker (Mathew et al. 2020; "*The Sunflower*")

- An economically important disease of sunflower
- Yield losses of 40%; Oil reduced by 10-15% (Mathew et al 2015)
- Caused by several species of *Diaporthe*
 - *D. helianthi* and *D. gulyae* are predominant in the U.S.

PHOMOPSIS STEM CANKER

Stem lesion of Phomopsis stem canker (Mathew et al. 2020; "*The sunflower*")

Phomopsis stem canker can be confused with other diseases (Mathew et al. 2020; "*The sunflower*")

FUNGICIDES

- Foliar fungicides labeled on sunflower include-
 - Triazole (FRAC 3)
 - Qol (FRAC 11)
 - SDHI (FRAC 7)
- Efficacy against Phomopsis stem canker

FUNGICIDES

- Traditional fungicides evaluation
 - Visible symptoms caused by pathogen
- Remote sensing technology
 - Provide repetitive observations of the same object with a larger spectral range than the human eye
- Normalized Difference Vegetation Index (NDVI)
 - GreenSeeker
 - Multispectral sensor (Unmanned Aerial Vehicle / Drones)

NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI)

- NDVI uses a combination of visual red light and near-infrared light
- NDVI measures plant health based on how a plant reflects light at specific frequencies.
- Plant pathogens modify the radiative properties of the crop canopy

RESEARCH OBJECTIVE

 Compare the efficacy of the fungicides against Phomopsis stem canker at R1 growth stage using remote sensing technology

Terminal bud forms a miniature floral head rather than a cluster of leaves (Schneiter and Miller 1981)

TATE UNIVERS d Environmental Science

EXPERIMENT

- Felt Farm, Brookings SD
- Planted on June 2nd
- Susceptible oil type hybrid (Nuseed)
- Randomized complete block design
- Plot size: 4 rows spaced at 30 inches, 20 feet in length
- Seeding rate: 18,000 seeds/A

EXPERIMENT

Treatments		Frac code	Rate oz/A
1	Non treated control	-	-
2	Headline	11	6
3	Priaxor (pre-mix)	7+11	4
4	Miravis NEO (pre-mix)	3+7+11	13.7
5	Trivapro (pre-mix)	3+7+11	13.7
6	Aproach Prima (pre-mix)	3+11	6.8
7	Endura	7	9
8	Folicur 430F	3	4
9	Headline + Folicur 430F (tank-mix)	11+3	6+4
10	Headline + Endura (tank-mix)	11+7	6+9
11	Endura + Folicur 430F (tank-mix)	7+3	9+4

- 10 treatments and nontreated control, 4 replications per treatment
- Fungicides rates applied according to the label
- All fungicides were applied with adjuvant (Induce; 0.125% V/V)

South Dakota

EXPERIMENT

- Application at R1 growth stage (07/21)
- All four rows sprayed
- Spray pressure: 30 psi
- Nozzle: flat fan (XR8002)
- Spray volume: 30 gal/A
- Speed: 2 mph

Aariculture, Foo d Environmental Science

DISEASE EVALUATION

- Disease severity was evaluated at R7-R8 using scale 0 to 5 on (Mathew et al. 2015)
- A total of 10 random plants in the two middle rows

Plots were harvested on 10/14

R7- the back of the head has started to turn pale yellow (Schneiter and Miller 1981)

R8- the back of the head is yellow but the bracts remain green (Schneiter and Miller 1981)

South Dakota State Universi

NDVI EVALUATION USING GREENSEEKER

- Normalized difference vegetation index (NDVI) values collected from the two middle rows using GreenSeeker® handheld sensor (Trimble Navigation Limited, Westminster, CO)
- First reading (07/21), before fungicides application; Second reading (07/30), after fungicides application
- Third reading (09/23), same day as disease severity evaluation

NDVI EVALUATION USING MULTISPECTRAL SENSOR

Drone – Phantom 4 Pro V2.0

- Sensor multispectral (5-band Red Edge)
- NDVI values obtained using ArcGIS (V10.7.1)

ουτή Dakota

DATA ANALYSES

- Disease severity index (DSI), NDVI, and yield data analyzed in R
- Treatment means comparison using Fisher's LSD test (α=0.05)
- Pearson's correlations were performed between DSI and NDVI, DSI and yield, NDVI and yield

DSI values collected on 9/23 using scale 0 to 5 (Mathew et al. 2015)

NDVI values from the third reading collected on 9/23 using GreenSeeker

 $0.00 \ 0.05 \ 0.10 \ 0.15 \ 0.20 \ 0.25 \ 0.30 \ 0.35$

Aariculture, Foo

NDVI values collected on 8/17 using UAV Drone

Sunflower yield (lb/A) values collected on 10/14

Aariculture, Foo

RESULTS

- Correlations between
 - DSI and NDVI (GreenSeeker) (r= -0.68: *p*=3.6e-07)
 - NDVI (GreenSeeker) and yield (r= 0.10; p=NS)
 - DSI and NDVI (multispectral sensor) (r = 0.21: p=NS)
 - NDVI (multispectral sensor) and yield (r = 0.13; p= NS)
 - GreenSeeker and multispectral sensor (r = -0.341: *p*=0.023)

SUMMARY

- Significant differences in NDVI (GreenSeeker and multispectral sensor) and DSI were observed among fungicides and non-treated control.
- Correlation analyses between NDVI (Greenseeker) and DSI(r= -0.68: p=3.6e-07) shows that Phomopsis stem canker severity was associated with a decrease in NDVI values

SUMMARY

 The handheld sensor and drone imagery was useful to assess whether the target plots being observed in the field contains healthy vegetation.

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

FUTURE WORK

 Evaluate fungicides against Phomopsis stem canker using remote sensing technology under field conditions in South Dakota in 2021

THANK YOU!

Renan Guidini renan.guidini@sdstate.edu

South Dakota State University

College of Agriculture, Food and Environmental Sciences