Phenotypic diversity of *Puccinia helianthi* (rust) in the sunflower seed production region of California

Brandt Berghuis, Tom Gulya, Suzanne Rooney Latham, Cheryl Blomquist, Tom Heaton, Bill Vaccaro and Samuel Markell

Sunflower Seed in California

- In 2014, California grew approximately ¼ of the world's supply of hybrid sunflower seed.
- California produces approximately 95% of the hybrid seed planted in USA.
- California grows less than 2% of US sunflower acreage.

(Photo: Brandt Berghuis)

Sunflower Hybrid Seed Production in California

- The Sacramento valley in California is known around the world as a premier sunflower producing region.
- Colusa, Solano, Glenn, Sutter, and Yolo.
- Mediterranean climate and field isolation for seed purity.
- Climate helps meet the needs of phytosanitary restrictions for exports.

(Photo: Brandt Berghuis)

(Long, R. et al 2019)

Sunflower Seed Production California

- California's dry climate and irrigated sunflower fields, disease prevalence and severity is less than some other production areas in the USA.
- However, many pathogens are classified under quarantine status and thus can impede exportation.

(Photo: Brandt Berghuis)

(Long, R. et al 2019)

Previous Research

- 15 year study conducted by Gulya et al 2012 found three quarantine type diseases on sunflower breeding fields (rust most prevalent 4.3% of production fields).
- Previous research on the diversity of *P. helianthi* in the United States showed that across 104 locations in the United States 29 races were determined (Friskop et al 2015).
- This study only included 7 field locations in California.

(Photo: Brandt Berghuis)

Previous Research

- Isolates from California generally appeared to be more virulent.
- Most cultivated sunflowers in California have a diverse number of host genotypes.
- Virulence data in California could provide useful phenotypic information for production fields in the Midwest.

Determine the phenotypic diversity of *Puccinia helianthi* (rust) in the sunflower seed production region of California

Pathogen Collections

- I. 2017 and 2018 surveys in California.
- II. 2017 and 2018 rust from breeders fields in California.
- III. 2018 rust samples from North Dakota.
- IV. 2018 rust samples from Tom Gulya.

Excellent Help in California

- Tom Gulya and Ryan Humann
- Tom Heaton and Bill Vaccaro
- Suzanne Rooney Latham and Cheryl Blomquist

Quick Survey in North Dakota

Inoculating Differentials

(Photo: Brandt Berghuis)

Table 1. Sunflower rust differential line, resistance genes or alleles, and scoring values for race nomenclature

Set	Differential	Resistance gene or alleles	Scoring value ^a
One	7350		1
	MC90	R_1	2
	MC29	$R_2 + R_{10}$	4
Two	P386	R_{4e}	1
	HA-R1	R_{4a}	2
	HA-R2	R ₅	4
Three	HA-R3	R_{4b}	1
	HA-R4	R_{4c}	2
	HA-R5	R_{4d}	4

^a Scoring value is the numerical value associated with virulence on a specific differential. The additive score for each set is the digit in the three-digit race name (Gulya and Masirevic 1996).

(Friskop et al. 2015)

Production Fields Sunflower Rust Races 2017-18

- 2017
 - 11 isolates
 - 6 races
 - 337 most prevalent (4/11)
 - Solano and Glenn

- 2018
 - 13 isolates
 - 8 races
 - 336 most prevalent (5/13)
 - Solano and Glenn

Wild Sunflower Rust Races 2017-18

- 2017
 - 11 isolates
 - -6 races
 - 337 most prevalent

- 2018
 - 20 isolates
 - 16 races
 - 336 most prevalent

Field Samples-Rust Races 2018 in North Dakota

- 2018
 - 3 rust races
 (325, 326, and 336)

(Photo: Brandt Berghuis)

Most Effective Genes/Alleles

7350	MC90	MC29	P386	HA-R1	HA-R2	HA-R3	HA-R4	HA-R5
•••	R ₁	R ₂ +R ₁₀	R _{4e}	R _{4a}	R ₅	R _{4b}	R _{4c}	R _{4d}
0/50	4/50	36/50	11/50	8/50	49/50	29/50	14/50	13/50

Most Effective Genes/Alleles

7350	MC90	MC29	P386	HA-R1	HA-R2	HA-R3	HA-R4	HA-R5
	R ₁	R ₂ +R ₁₀	R _{4e}	R _{4a}	R ₅	R _{4b}	R _{4c}	R _{4d}
0/50	4/50	36/50	11/50	8/50	49/50	29/50	14/50	13/50
				4				

HA-R2 was resistant to 49/50 isolates

Most Effective Genes/Alleles

7350	MC90	MC29	P386	HA-R1	HA-R2	HA-R3	HA-R4	HA-R5
	R ₁	R ₂ +R ₁₀	R _{4e}	R _{4a}	R ₅	R _{4b}	R _{4c}	R _{4d}
0/50	4/50	36/50	11/50	8/50	49/50	29/50	14/50	13/50
_								

MC90 was resistant to 4/50 isolates

Summary

- Our findings were similar to what Friskop et al. 2015 found.
- Did not find a lot of differences in races of rust on wild sunflower compared to breeding fields.
- One isolate virulent on all resistant genes/alleles in the differential set.

Thank you!

Work Cited

- Friskop, A., Gulya, T., Harveson, R., Humann, R., Acevedo, M., and Markell, S. 2015. Phenotypic Diversity of Puccinia helianthi (Sunflower Rust) in the United States from 2011 and 2012. Department of Plant Pathology, North Dakota State University, Fargo.
- Gulya, T., Rooney-Latham, S., Miller, J., Kosta, K., Murphy-Vierra, C., Larson, C., Vaccaro, W., Kandel, H., and Nowatzki, J. 2012. Sunflower Diseases Remain Rare in California Seed Production Fields Compared to North Dakota.
- Lazicki, P. and Geisseler, D. 2016. Sunflower Production in California. University of California, Davis. Plant Health Progress.
- Long, R., Gulya, T., Bali, K., Mathesius, K., Meyer, R. 2019. Sunflower Hybrid Seed Production in California. University of California Agriculture and Natural Resources. ANR Publication 8638.