Further
Updates on
Sunflower
Pollination:

Interactions of Plant Phenotype, Crop Environment, and Pollinator Identity

Beth Ferguson, Brent Hulke & Jarrad Prasifka USDA-ARS, ETSARC Fargo, ND

Sunflower Pollinators

- Bees increase yield in sunflower hybrids $\approx 40\%^{12}$
- Larger florets reduce visits from native bees (ND)
- Differences in value, behavior of native bees versus honeybees

Du Toit AP. 1990. The importance of certain insects as pollinators of sunflower

Mallinger, RE., J Bradshaw, AJ Varenhorst, and JR Prasifka. 2019. Native solitary bees provide economically significant pollination services to confection sunflowers (*Helianthus annuuus* L.) (Asterales: Asteraceae) grown across northern Great Plains

Pollinator Projects-2020

1

Examine additional inbred lines for genotype, environment and genotype x environment effects on nectar volume and composition (new)

2

Use phenotypic data to map gene(s) controlling nectar volume in cultivated sunflower (continued)

3

Continue field observations to model how nectar access, nectar volume, and other traits influence bee visitation to sunflowers (continued)

Nectar x Floret

Line: p<0.05

Treatment: p<0.05

Line*Treatment: p<0.05

Nectar Concentration

Line: p<0.05

Treatment: p<0.05

Line*Treatment: p=0.02

Total Sugar

Line: p<0.05

Treatment: p<0.05

Line*Treatment: p<0.05

Change Over Time-Nectar Volume

Change Over Time-Brix

Objective 1 Summary

- Sunflowers produce less nectar under cooler temperatures
- Response appears consistent across lines
- Sugar content is unaffected by changing temperature

Pollinator Projects-2020

1

Examine additional inbred lines for genotype, environment and genotype x environment effects on nectar volume and composition (new)

2

Use phenotypic data to map gene(s) controlling nectar volume in cultivated sunflower (continued)

3

Continue field observations to model how nectar access, nectar volume, and other traits influence bee visitation to sunflowers (continued)

Parental line nectar production in growth chamber

Nectar volume of F₆ plants in growth chambers

Nectar volume as % of HA 434

Relationship of sugar content to nectar volume

Objective 2 Summary

- Nectar volume effectively phenotyped in chambers
- High & low volume F_6 lines from chamber, showed similar pattern under field conditions (not shown)
- Increasing nectar volume dilutes sugar content (in this population)
- Progress delayed due to Covid limitations

Pollinator Projects-2020

1

Examine additional inbred lines for genotype, environment and genotype x environment effects on nectar volume and composition (new)

2

Use phenotypic data to map gene(s) controlling nectar volume in cultivated sunflower (continued)

3

Continue field observations to model how nectar access, nectar volume, and other traits influence bee visitation to sunflowers (continued)

Native Bee Response to Floret Length-ND 2019

Bumblebee Response to Floret Length-ND 2019

Honeybee Response to Floret Length-AZ 2019

Honeybee Response to Floret Length-AZ 2020

Objective 3 Summary

- Native Bees respond negatively to increasing floret length <u>except</u> for bumblebees, which respond positively
- Similarly, honeybees decrease visitation as floret length increases
 - Low nectar volume in sampled plants may explain variation
 - Additional factors like sugar content and head area further explain visitation patterns

Takeaways

- Continued progress on understanding factors governing bee and sunflower interactions
- Nectar volume mapping possible, genetic analysis delayed
- After removing pollen, bee relationship to floret length less clear and revealed additional factors

Acknowledgements

- Lisa Brown
- Shawna Pantzke
- Vanessa Corby-Harris
- Gloria DeGrandi-Hoffman

