

EVALUATION OF SENSITIVITY OF *DIAPORTHE HELIANTHI* AND *D. GULYAE* TO PYRACLOSTROBIN (QOI, FRAC 11) FUNGICIDE UNDER LAB CONDITIONS

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

Ruchika Kashyap¹, William Underwood², Samuel Markell³, Robert Harveson⁴, and Febina Mathew¹

¹Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007; ²USDA-ARS-PA Sunflower and Plant Biology Research Unit, Fargo, ND 58102-2765; ³Department of Plant Pathology, North Dakota State University, Fargo, ND 58102; ⁴Department of Plant Pathology, University of Nebraska-Lincoln, Scottsbluff, NE 69361

OUTLINE

A Phomopsis stem canker - Introduction

Justification

Objective

Material and Methods

h Results

Implications and Future work

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

PHOMOPSIS STEM CANKER

Source: Mathew et al. 2018

Phomopsis stem canker is a yield-limiting disease in the U.S.

Over 40% yield loss was reported in MN, ND and SD in 2010 (Mathew et al. 2015)

Diaporthe helianthi, D. gulyae, and D. stewartii are reported in the U.S., out of the 20 species worldwide (Elverson et al. 2020).

DISEASE MANAGEMENT

Use of Resistant/Tolerant varieties

Fungicides

Qol – FRAC 11
SDHI – FRAC 7
Triazoles – FRAC 3

Use of chemical fungicides

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

QOIS

- Quinone Outside Inhibitors Strobilurin fungicides
- Target the cytochrome bc1 enzyme complex (III) of mitochondria
 - Inhibit mitochondrial respiration by blocking electron transfer within the respiratory chain
 - Bind to the quinol oxidation site. By blocking this site, the pathogen cannot produce energy
- Qualitative and Quantitative Resistance
- Cross resistance reported between members of the group
- High Risk fungicides, single-site of action

JUSTIFICATION

Among the various foliar fungicides labelled on sunflower, Qolbased is important

It is important to monitor response of Diaporthe species to different fungicide chemistries No research yet determining the sensitivity of species of *Diaporthe*

Determine the sensitivity of *D. helianthi* and *D. gulyae* to QoI (FRAC – Fungicide Resistance Action Committee Group 11) fungicide under lab conditions

South Dakota State University

MANAGING IN VITRO RESISTANCE TO Qols

 When the normal respiration pathway is inhibited by Qols, an alternate mitochondrial respiration pathway appears to get activated, mediated by alternative oxidase (AOX) under in vitro conditions (Kaneko and Ishii 2009)

• This may result in inaccuracies in *in vitro* sensitivity evaluation

• SHAM (Salicylhydroxamic acid), thus plays a role in inhibiting this alternate pathway

We needed to know the exact dose of SHAM which could be added without causing any significant differences in the pyraclostrobin study

MATERIAL AND METHODS

- SHAM (Salicylhydroxamic acid) Methanol
- Water agar medium Serial dilution Acetone
- Concentrations 0 (No-fungicide), 10, 20, 40, 80, 100, 150 µg a.i./ml
- Two species, *D. gulyae* and *D. helianthi*
- 20 isolates, collected from MN, NE, ND and SD
- CRD, 4 replications (Petri dishes) per treatment, Experiment repeated twice
- Percent mycelial growth inhibition was calculated

$$Mi (\%) = \frac{Mc - Mt}{Mc} \times 100$$

Where, Mi- Inhibition of mycelial growth, Mc- mycelial growth of pathogen in control, Mt- mycelial growth of pathogen in treatment plate

Radial growth measurement of *D. gulyae* on media amended with SHAM

South Dakota State University

South Dakota State University

Mycelial growth inhibition of *D. helianthi* isolates by increasing concentrations of salicylhydroxamic acid (SHAM) on water-agar media

South Dakota State University

MATERIAL AND METHODS

- Two species, *D. gulyae* and *D. helianthi*
- 20 isolates, collected from MN, NE, ND and SD
- Technical grade Pyraclostrobin (95%) Stock Solution Acetone
- Water agar medium Serial dilution with and without SHAM 20 µg a.i./ml
- Concentrations 0 (No-fungicide), 0.001, 0.01, 0.1, 1, 10 µg a.i./ml
- CRD, 4 replications (Petri dishes) per treatment, Experiment repeated twice
- Radial growth measured
 - 5 days (*D. gulyae*)
 - 7 days (D. helianthi)
- The fungicide concentrations and corresponding mycelial growth inhibitions were used to calculate EC₅₀ (Effective concentration inhibiting fungal growth by half)

EC₅₀ values for ten *D. helianthi* isolates on pyraclostrobin amended water-agar with and without SHAM

Ten	Ру	raclost	robin with SHAM	Pyraclostrobin without SHAM			Significance
Isolates	MEAN EC ₅₀	LSD	CI	MEAN EC ₅₀	LSD	CI	(P value)
59	0.055	а	0.04765 - 0.06137	0.050	а	0.04294 - 0.05670	0.6152
AC7	0.048	а	0.04085 - 0.05457	0.049	а	0.04261 - 0.05636	0.8177
N2	0.047	а	0.04032 - 0.05404	0.049	а	0.04207 - 0.05582	0.6933
Y1	0.045	ab	0.03839 - 0.05210	0.044	ab	0.03709 - 0.05085	0.766
4111a	0.036	bc	0.02937 - 0.04309	0.037	bc	0.03051 - 0.04426	0.0514
Gly 3	0.031	cd	0.02401 - 0.03773	0.034	С	0.02732 - 0.04107	0.5115
AG1	0.028	cde	0.02099 - 0.03470	0.029	cd	0.02242 - 0.03617	0.6522
434L1	0.023	def	0.01611 - 0.02983	0.020	de	0.01336 - 0.02711	0.6933
AH4	0.018	ef	0.01149 - 0.02520	0.019	е	0.01224 - 0.02600	0.6937
G6	0.018	f	0.01120 - 0.02492	0.019	е	0.01229 - 0.02605	0.4824
Average	0.035			0.035			P = 0.9641

EC₅₀ values for ten *D. gulyae* isolates on pyraclostrobin amended water-agar with and without SHAM

Ten	Ру	raclost	robin with SHAM	Pyraclostrobin without SHAM			Significance
Isolates	MEAN EC ₅₀	LSD	CI	MEAN EC ₅₀	LSD	СІ	(P value)
AU	0.026	а	0.01598 - 0.03631	0.031	а	0.02668 - 0.03573	0.7562
Crook 6	0.025	а	0.01502 - 0.03534	0.028	а	0.02388 - 0.03293	0.4652
609-7	0.020	ab	0.00983 - 0.03016	0.027	а	0.02226 - 0.03131	0.0979
Dg 15	0.018	abc	0.00756 - 0.02788	0.020	b	0.01553 - 0.02458	0.4174
Dg 11	0.017	abc	0.00711 - 0.02743	0.014	bc	0.00950 - 0.01854	0.4023
610-8	0.011	bc	0.00056 - 0.02088	0.013	С	0.00867 - 0.01772	0.3899
X2	0.010	bc	-0.00046 - 0.01986	0.012	cd	0.00717 - 0.01622	0.1602
N4	0.008	bc	-0.00204 - 0.01827	0.009	cde	0.00405 - 0.01309	0.6039
M9	0.006	bc	-0.00418 - 0.01613	0.006	de	0.00185 - 0.01089	0.7562
DG 8	0.005	С	-0.00554 - 0.01477	0.005	е	0.00056 - 0.00961	0.4018
Average	0.015			0.016			P = 0.6138

SOUTH DAKOTA STATE UNIVERSITY College of Agriculture, Food and Environmental Sciences

MATERIAL AND METHODS

- Two species, *D. gulyae* and *D. helianthi*
- 52 isolates each, collected from MN, NE, ND and SD 2013 to 2020
- Technical grade Pyraclostrobin (95%) Stock Solution Acetone
- Water agar medium Serial dilution
- Concentrations 0 (No-fungicide), 0.001, 0.01, 0.1, 1, 10 µg a.i./ml
- Radial growth measured
 - 5 days (*D. gulyae*)
 - 7 days (*D. helianthi*)
- The fungicide concentrations and corresponding mycelial growth inhibitions were used to calculate EC₅₀ (Effective concentration inhibiting fungal growth by half)
- CRD, 4 replications (Petri dishes) per treatment, Experiment repeated twice

Radial growth measurement of *D. gulyae* on media amended with Pyraclostrobin

South Dakota State University

RESULTS

4

Significant differences were observed among the EC_{50} values of all the isolates of both the species collected across different years from different states

Isolate 18.27 (collected from MN in 2019) had a significantly higher EC_{50} than all other *D. helianthi* isolates

Similarly, isolate M6 (collected from ND in 2018) had a significantly higher EC_{50} than all other *D. gulyae* isolates

No resistance was observed for the two fungi to pyraclostrobin, indicating that isolates of both the *Diaporthe* species are sensitive to pyraclostrobin

IMPLICATIONS

The current study is the first multistate screening of *D. helianthi* and *D. gulyae* isolates for sensitivity to pyraclostrobin in the United States

A protocol was established for monitoring of sensitivity of *D. helianthi* and *D. gulyae* isolates to Qol in future

Monitoring fungicide sensitivity is important to prevent emergence of resistant populations

FUTURE WORK

Further studies to examine the relationship between EC_{50} values and effectiveness of fungicide application, through green house or in-planta assays

Monitoring of fungicide sensitivity will thus help us to recommend farmers whether the standard rate will continue to manage the disease, or a higher rate is needed

REFERENCES

 Elverson, T. R., Kontz, B.J., Markell, S.G., Harveson, R.M. and Mathew, F.M., 2020. Quantitative PCR Assays Developed for Diaporthe helianthi and Diaporthe gulyae for Phomopsis Stem Canker Diagnosis and Germplasm Screening in Sunflower (Helianthus annuus). *Plant Disease 104*(3), pp.793-800.

- Kaneko, I. and Ishii, H., 2009. Effect of azoxystrobin on activities of antioxidant enzymes and alternative oxidase in wheat head blight pathogens Fusarium graminearum and Microdochium nivale. J of Gen PI Path. P75(5), p.388.
- Mathew, F. M., Alananbeh, K. M., Jordahl, J. G., Meyer, S. M., Castlebury, L. A., Gulya, T. J., and Markell, S. G. 2015. Phomopsis stem canker: A reemerging threat to sunflower (*Helianthus annuus*) in the United States. Phytopathology 105:990-997.
- Mathew, F., Olson, T., Marek, L., Gulya, T., and Markell, S. 2018. Identification of sunflower (*Helianthus annuus*) accessions resistant to *Diaporthe helianthi* and *Diaporthe gulyae*. Plant Health Prog. 19: 97–102.

ACKNOWLEDGEMENT

Lab mates:

Brian Kontz Ally Kristine MackayIn Fulton Nathan Braun Renan Guidini Nabin Dangal

Nebraska

South Dakota State University

THANK YOU

South Dakota State University