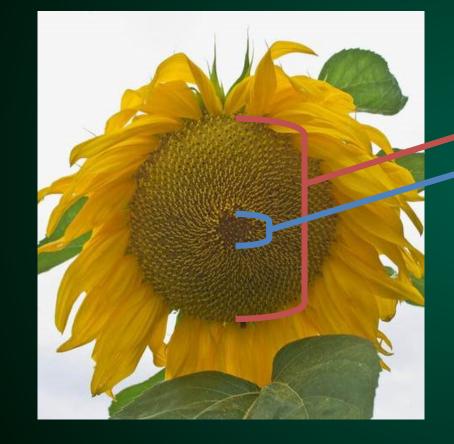

Analyses of NSA Survey Data Determining the Impact of Disease on Yield Components in ND and MN Sunflower Fields

Bryan Hansen¹, Andrew Friskop¹, Hans Kandel² and Sam Markell¹

¹Department of Plant Pathology, North Dakota State University, Fargo, ND; ²Department of Plant Sciences, North Dakota State University, Fargo, ND;

- 1003 surveyed fields in ND/MN
- Production practices
- Disease
- Insects
- Weeds
- Yield
- Factors limiting yield

Components Surveyed


Diseases

- Sclerotinia Wilt
- Sclerotinia Mid-stalk Rot
- Sclerotinia Head Rot
- Rhizopus
- Downy Mildew
- Phomopsis
- Phoma
- Charcoal Rot
- Verticillium
- Rust

Yield

- Harvestable Population
- Head Size
- Center Seed Set
- Seed Size
- Percent Good Seed
- Bird Damage*
- Yield

Components Surveyed

Yield

- Harvestable Population
- Head Size
- Center Seed Set
- Seed Size
- Percent Good Seed
- Bird Damage*
- Yield

Components Surveyed

Diseases

- Sclerotinia Wilt
- Sclerotinia Mid-stalk Rot
- Sclerotinia Head Rot
- Rhizopus
- Downy Mildew
- Phomopsis
- Phoma
- Charcoal Rot
- Verticillium
- Rust

Goal: Find a relationship between disease and yield components

Yield

- Harvestable Population
- Head Size
- Center Seed Set
- Seed Size
- Percent Good Seed
- Bird Damage*

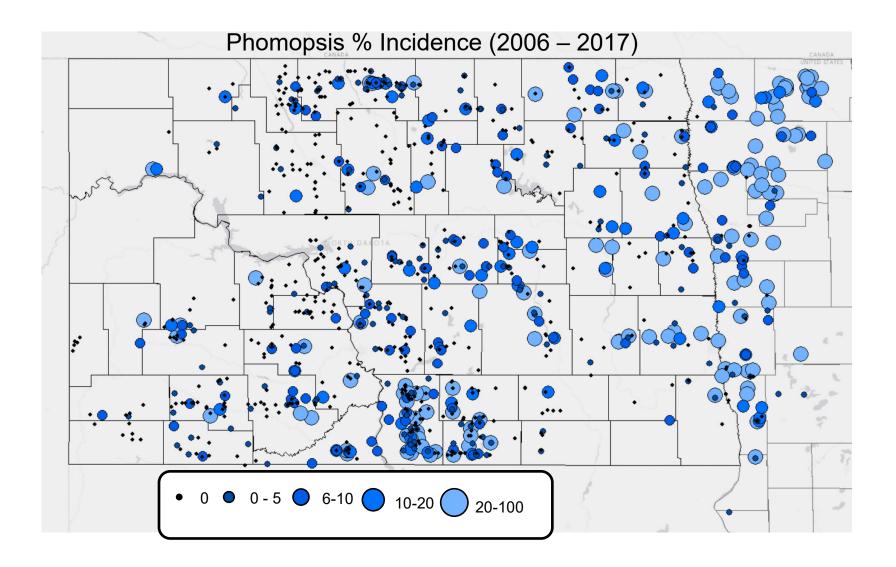
 Goal: Find a relationship between disease and yield components

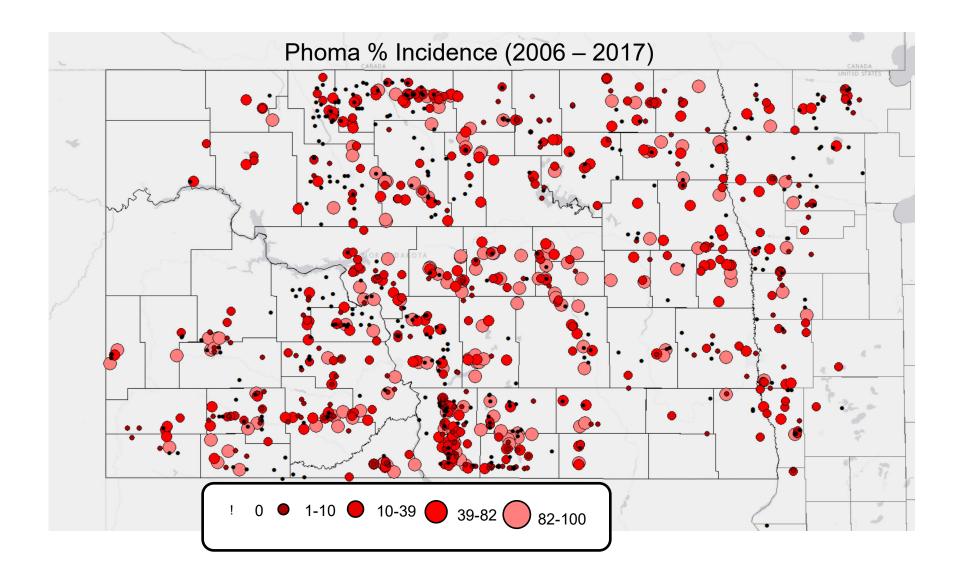
- Which component of yield is being affected
- How much disease before you expect losses
- Where research efforts can be focused

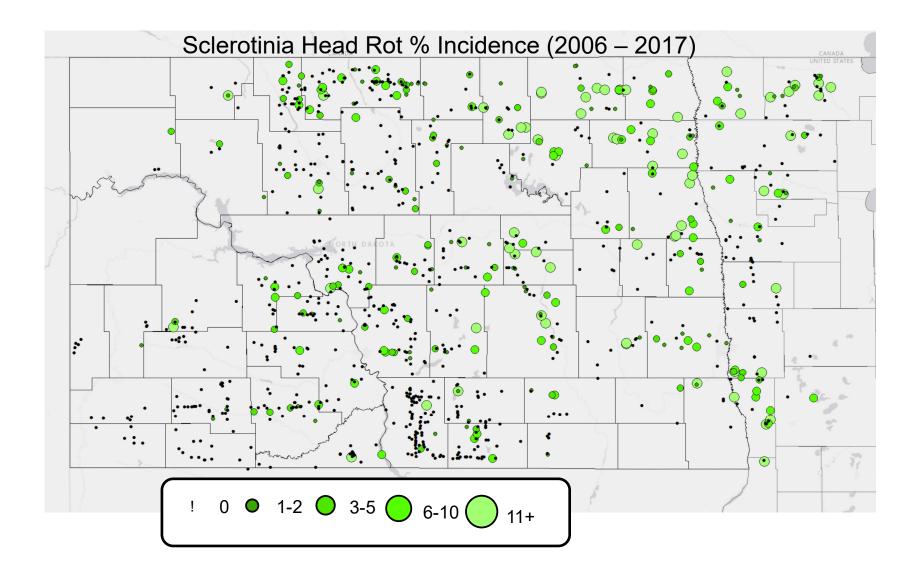
Average Yield of Limiting Factors			
Limiting Factor	Yield (lb/ac)	No of Obs	P-value
None	2169	66	
Birds	1332	51	<.0001**
Disease	1787	118	<.0001**
Drought	1575	66	<.0001**
Drown-out	1854	8	0.0934
Hail	1490	10	<.0001**
Herbicide	1123	1	0.0377*
Insects	1587	15	<.0001**
Lodging	1731	54	<.0001**
Plant spacing	1729	98	<.0001**
Weeds	1847	31	0.0033**
Uneven growth	1466	9	<.0001**

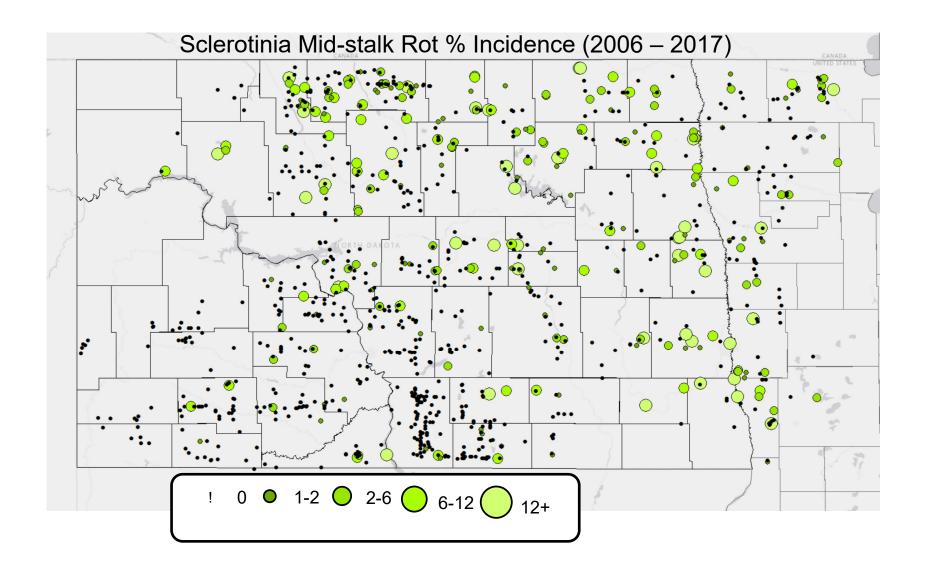
Average Yield of Limiting Factors			
Limiting Factor	Yield (lb/ac)	No of Obs	P-value
None	2169	66	
Birds	1332	51	<.0001**
Disease	1787	118	<.0001**
Drought	1575	66	<.0001**
Drown-out	1854	8	0.0934
Hail	1490	10	<.0001**
Herbicide	1123	1	0.0377*
Insects	1587	15	<.0001**
Lodging	1731	54	<.0001**
Plant spacing	1729	98	<.0001**
Weeds	1847	31	0.0033**
Uneven growth	1466	9	<.0001**

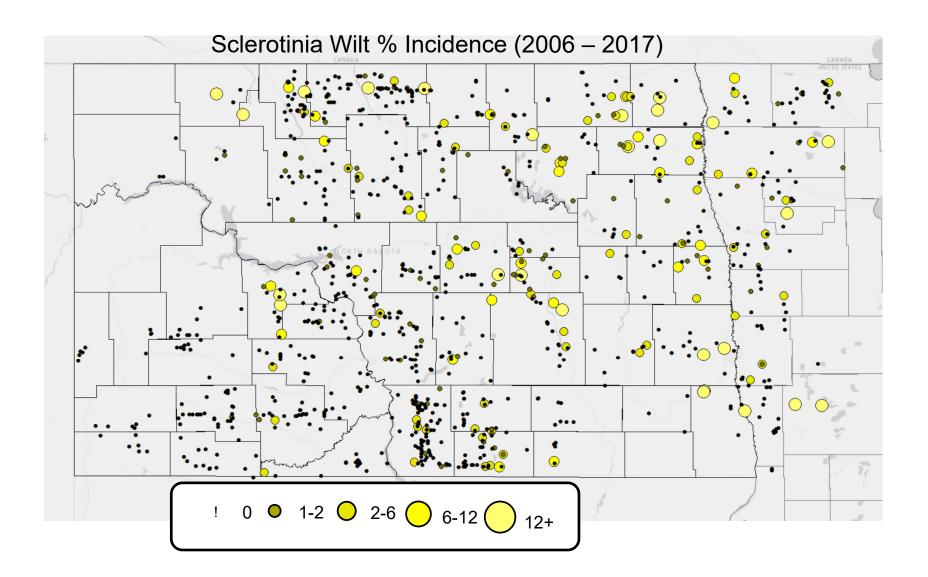
Step One

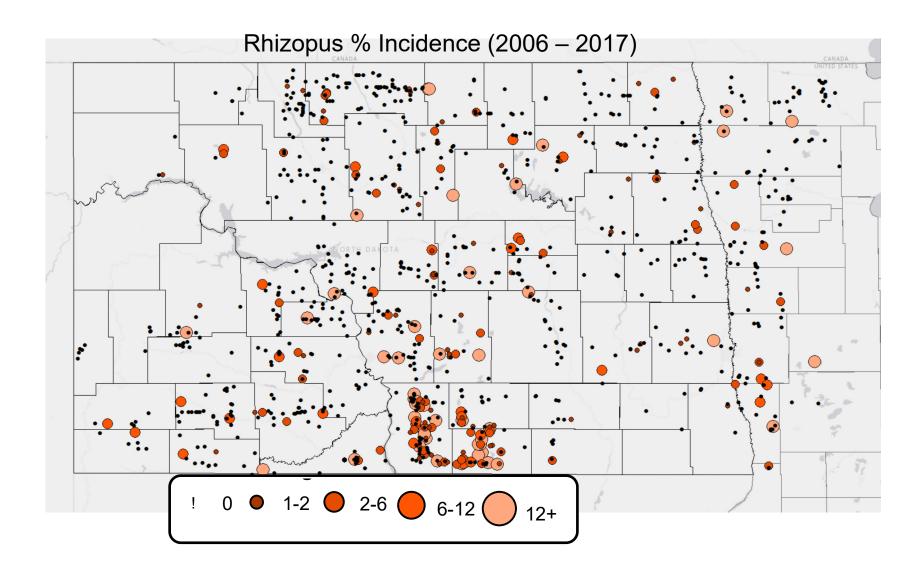

Correlation between disease and yield

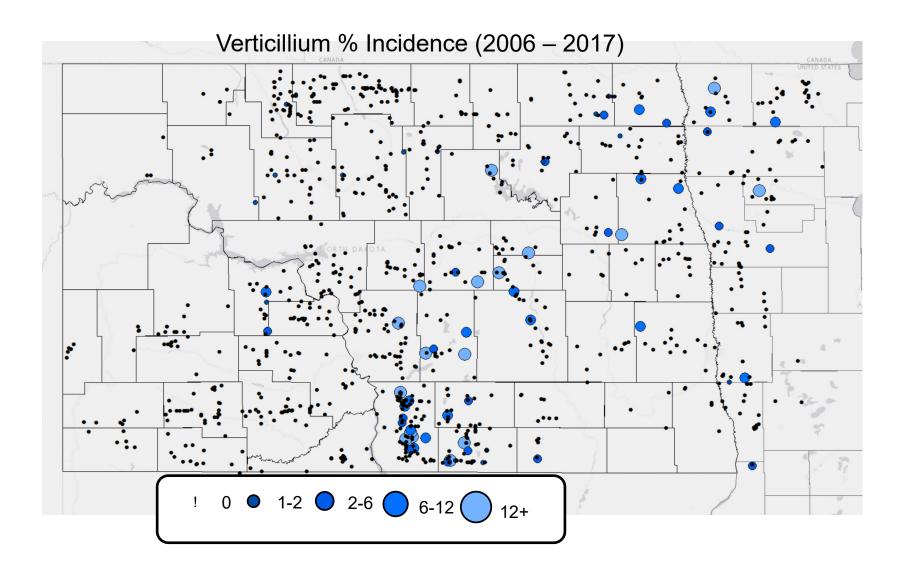

Step One

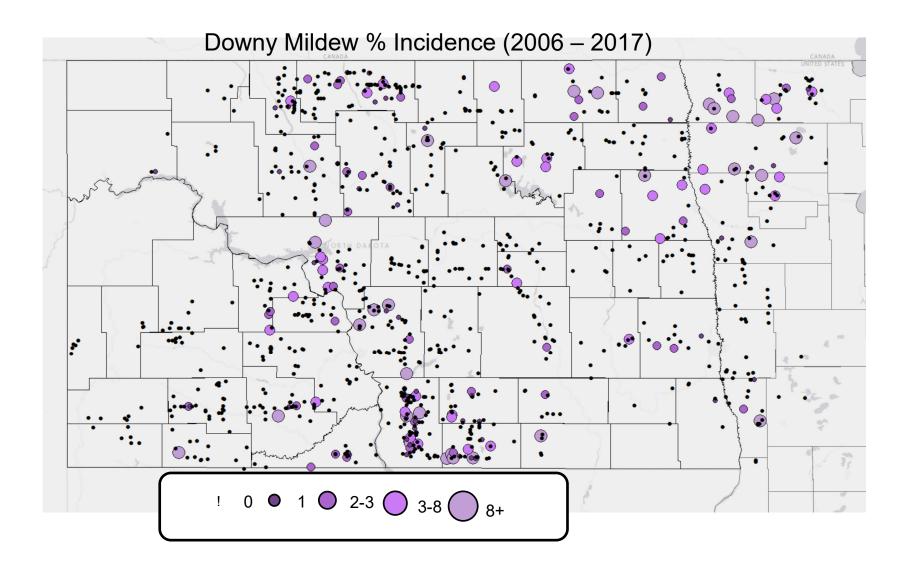

- Correlation between disease and yield
- Problem: Conditions favoring yield will often times also favor disease

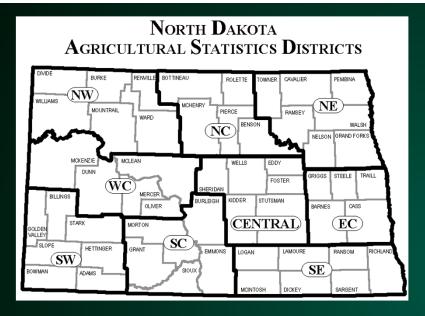

Step One

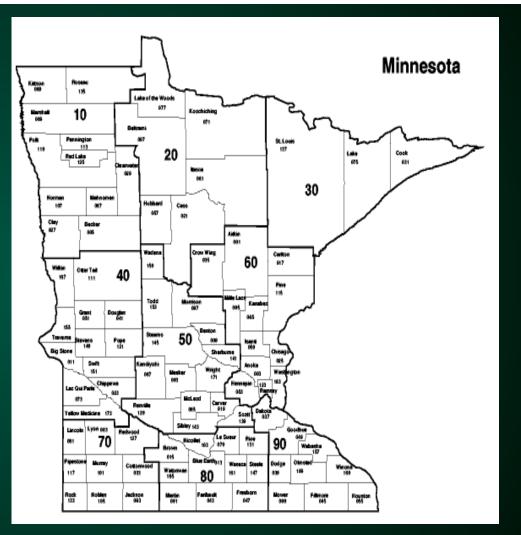

- Correlation between disease and yield
- Problem: Conditions favoring yield will often times also favor disease
- Solution: Integrate location & year into data











- Separate data into regions based on USDA Ag Districts
- Separate by year

Step Two

Integrating location & year into data

Proc GLIMMIX

- Fixed variable
 - Incidence
- Random variable
 - Region
 - Year
 - Incidence*Region
 - Incidence*Year
 - Region*Year
 - Incidence*Region*Year

Step Two

• Yield data was standardized on the region*year average

- Yield was not represented as lb/ac but rather a percentage of the region's average that year, for example
- "A 3% decrease in yield was observed per each unit increase in disease"

					% of
Field No.	lb/ac		Average		Average
Field 1	1788	÷	1623	=	110
Field 2	1576	÷	1623	=	97
Field 3	1855	÷	1623	=	114
Field 4	1491	÷	1623	=	92

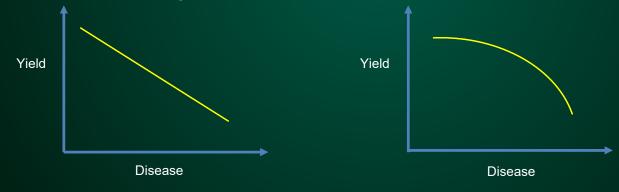
Example:

	Yield	
	Parameter	
Disease	Estimate	p-value
Sclerotinia Wilt	-0.22%	0.1541
Sclerotinia Mid-stalk	-0.04%	0.8432
Sclerotinia Head Rot	-0.17%	0.416
Rhizopus	-0.35%	0.0594
Downy Mildew	-0.37%	0.2451
Phomopsis	-0.14%	0.0276
Phoma	0.01%	0.7933
Verticillium	0.07%	0.7099
Charcoal Rot	-0.57%	0.2127
Rust	-0.57%	0.5516
Model p-value	0.2614	
r ²	0.0702	

	Yield	
	Parameter	
Disease	Estimate	p-value
Sclerotinia Wilt	-0.22%	0.1541
Sclerotinia Mid-stalk	-0.04%	0.8432
Sclerotinia Head Rot	-0.17%	0.416
Rhizopus	-0.35%	0.0594
Downy Mildew	-0.37%	0.2451
Phomopsis	-0.14%	0.0276
Phoma	0.01%	0.7933
Verticillium	0.07%	0.7099
Charcoal Rot	-0.57%	0.2127
Rust	-0.57%	0.5516
Model p-value	0.2614	
r ²	0.0702	

1. Model p-value is >0.05/ and low fitness

	Yield	
	Parameter	
Disease	Estimate	p-value
Sclerotinia Wilt	-0.22%	0.1541
Sclerotinia Mid-stalk	-0.04%	0.8432
Sclerotinia Head Rot	-0.17%	0.416
Rhizopus	-0.35%	0.0594
Downy Mildew	-0.37%	0.2451
Phomopsis	-0.14%	0.0276
Phoma	0.01%	0.7933
Verticillium	0.07%	0.7099
Charcoal Rot	-0.57%	0.2127
Rust	-0.57%	0.5516
Model p-value	0.2614	
r ²	0.0702	


- 1. Model p-value is >0.05 and low fitness
- 2. A 0.22% yield loss is observed for each % increase in Sclerotinia wilt incidence
 - a) Translates to 4lb/ac loss on a 2000 lb/ac average

	Yield	
	Parameter	
Disease	Estimate	p-value
Sclerotinia Wilt	-0.22%	0.1541
Sclerotinia Mid-stalk	-0.04%	0.8432
Sclerotinia Head Rot	-0.17%	0.416
Rhizopus	-0.35%	0.0594
Downy Mildew	-0.37%	0.2451
Phomopsis	-0.14%	0.0276
Phoma	0.01%	0.7933
Verticillium	0.07%	0.7099
Charcoal Rot	-0.57%	0.2127
Rust	-0.57%	0.5516
Model p-value	0.2614	
r ²	0.0702	

- 1. Model p-value is >0.05 and low fitness
- 2. A 0.22% yield loss is observed for each % increase in Sclerotinia wilt incidence
 - a) Translates to 4lb/ac loss on a 2000 lb/ac average
- 3. Analyses including yield components (e.g. seed size) were also nonsignificant/low fitness (not shown)

Next Step

- Regions and years take into account cool/warm or wet/dry differences...to an extent
- Yield is affected differently when multiple diseases are present
- Are disease-yield relationships linear

Conclusion

- Considerable analyses have been done
 - Disease is limiting yield
 - Simple relationships are unclear
 - Complex models are next step
- Maps show areas at risk