New Approaches for the Sunflower Pathology Program at USDA-ARS

Bill Underwood Research Plant Pathologist USDA-ARS Northern Crop Science Laboratory, Fargo ND

About Me

- Originally from southern Indiana (Madison, on the Ohio River between Louisville and Cincinnati).
- Grandparents farmed tobacco, corn, soybeans.

About Me

- 2001: BS Biology Indiana University
- 2006: PhD Genetics Michigan State
- 2007-2010: NIH Postdoctoral Fellow Carnegie Institution for Science (Stanford) then UC Berkeley.
- 2010-2015: Staff Scientist UC Berkeley Energy Biosciences Institute Dept. of Plant & Microbial Biology
- July 2015: Joined ARS Sunflower & Plant Biology in Fargo

Topics

 Overview of major recent advances in Plant Pathology Research

• Sclerotinia

• Phomopsis

• Downy mildew / Rust

Advances in Plant Pathology Research In the Past Decade

- Insights into pathogen effector host target dynamics that drive outcomes of plant-microbe interactions.
- Explosion in number of sequenced plant and phytopathogen genomes.
- Expanded understanding of R gene-mediated resistance, how NB-LRRs provide immune system surveillance.
- Insights into inverse gene-for-gene relationships in necrotroph pathogenicity.

Biotrophic

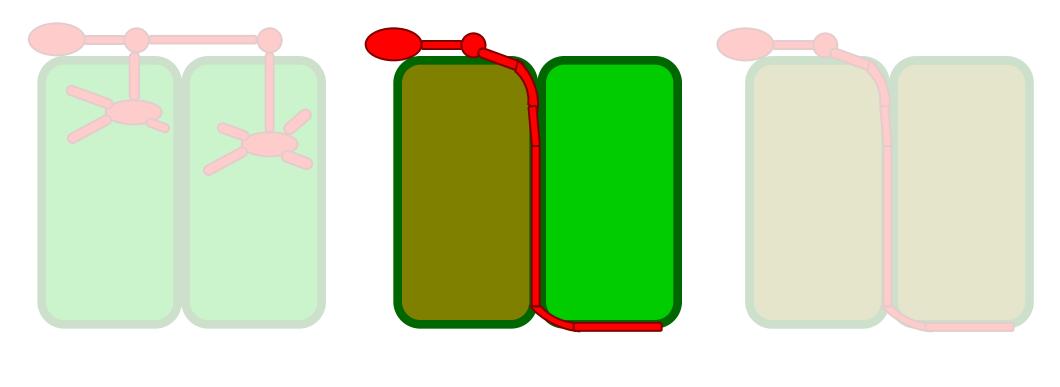
Golovinomyces cichoracearum

Hemi-biotrophic

Pseudomonas syringae

Necrotrophic

Sclerotinia sclerotiorum



Biotrophic

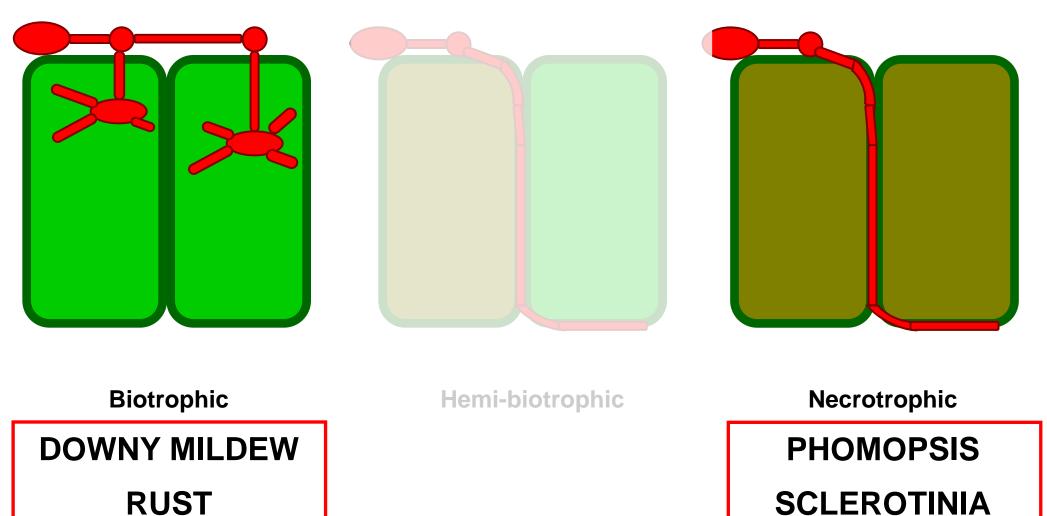
Hemi-biotrophic

Necrotrophic

Biotrophic

Hemi-biotrophic

Necrotrophic



Biotrophic

Hemi-biotrophic

Necrotrophic

Biotrophic

 ${}^{\bullet}$

Hemi-biotrophic

Necrotrophic

• Quantitative, polygenic resistance.

• Virulence effectors drive pathogenicity.

Qualitative, R gene-mediated resistance.

Toxins and necrotrophic effectors drive pathogenicity.

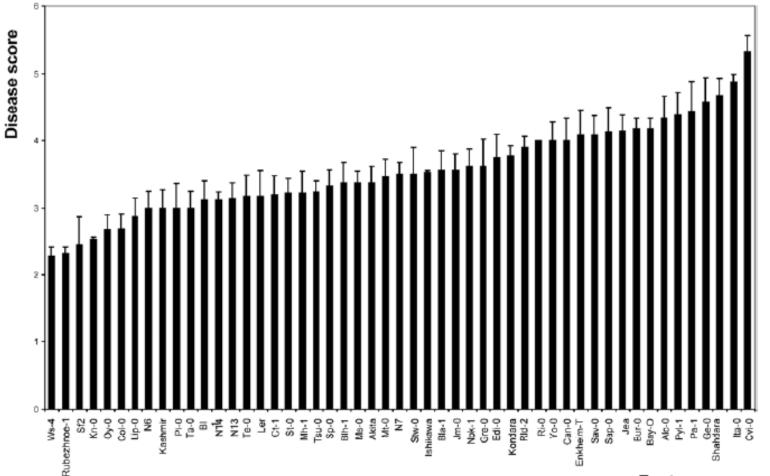
Sclerotinia

- No paradigm for broad host-range necrotrophic pathogens.
- Genetic variation for resistance among individuals within host species exists, but gene identities and resistance mechanisms are unknown.
- Genetic complexity of resistance hinders breeding efforts.
- Loci contributing to resistance have been identified through QTL mapping and association studies in many affected plants, but map-based cloning in crop plants with large, complex genomes remains prohibitive. No genes contributing to quantitative resistance cloned in any plant.
- No rational strategies for combining QTL from different sources.

Goals

- Leverage functional genomics resources for *Arabidopsis thaliana* to identify, clone, and validate genes contributing to quantitative resistance.
- Identify important Sclerotinia virulence determinants (effectors) as a step toward reducing complexity.

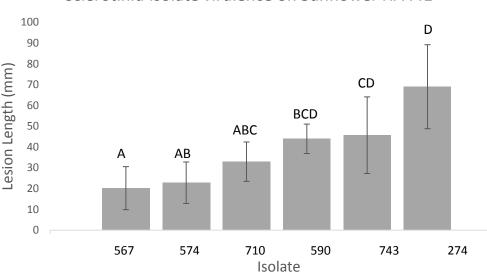
Sclerotinia

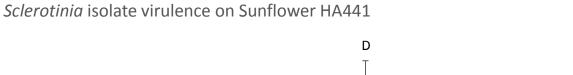

Why Use Arabidopsis?

- Association mapping is a powerful strategy to unravel the genetics of complex traits.
- Arabidopsis is a gold standard for association mapping.
- >1300 natural accessions genotyped to extremely high density (polymorphic marker every 500 bp).
- Extensive functional resources.

Sclerotinia

Why Use Arabidopsis?


Goals


- Leverage functional genomics resources for *Arabidopsis thaliana* to identify, clone, and validate genes contributing to quantitative resistance.
- Identify important Sclerotinia virulence determinants (effectors) as a step toward reducing complexity.

Sclerotinia

- A sequenced genome, small genome size, and reduced costs of genotyping using high-throughput sequencing facilitate AM to identify virulence effectors.
- Collaborative effort w/ Bob Brueggeman (NDSU), Berlin Nelson (NDSU), and Jim Steadman (Nebraska).

Goals

- Identify and characterize toxins and/or necrotrophic effectors contributing to virulence.
- Evaluate diverse sunflower germplasm for insensitivity. Map responsible loci.

Downy Mildew / Rust

Goals

- Develop strategies to clone and validate NB-LRR resistance genes to facilitate improved deployment and stacking.
- Identify partial, race non-specific resistance to complement R genemediated resistance.
- Recent availability of *P. halstedii* genome makes effector-driven approaches feasible.

Overarching Goal

Determine identities and functions of genes involved in resistance of sunflower to economically important pathogens to improve efficiency and efficacy in deploying genetic resistance.

Acknowledgements

Collaborators:

Chris Misar

Robert Brueggeman (NDSU)

Michelle Gilley

Berlin Nelson (NDSU)

Mitch DuFour

Jim Steadman (Nebraska)

All of my colleagues and co-workers at the Sunflower and Plant Biology Research Unit

THANK YOU

Bill Underwood William.Underwood@ars.usda.gov