
Fusarium sp. associated with stem diseases on sunflowers

F. Mathew¹, K. Alananbeh¹, J. Jordahl¹, S. Meyer¹, N. Gudmestad¹, T. Gulya², and S. Markell¹

¹North Dakota State University, Fargo, ND; ²USDA-ARS, Northern Crop Science Laboratory, Fargo, ND

NDSU NORTH DAKOTA STATE UNIVERSITY

Fusarium sp. (alone or associated with other fungi)

(Mathew *et al.*, 2010, Abdullah and Al-Mosawi, 2010, Sharfun-Nahar and Mushtaq, 2007, de Souza-Motta *et al.*, 2003, Antonova *et al.*, 2002, de Baron, 1983, Bhargava *et al.*, 1978, Bilai, 1977, Orellana, 1971)

Disease cycle

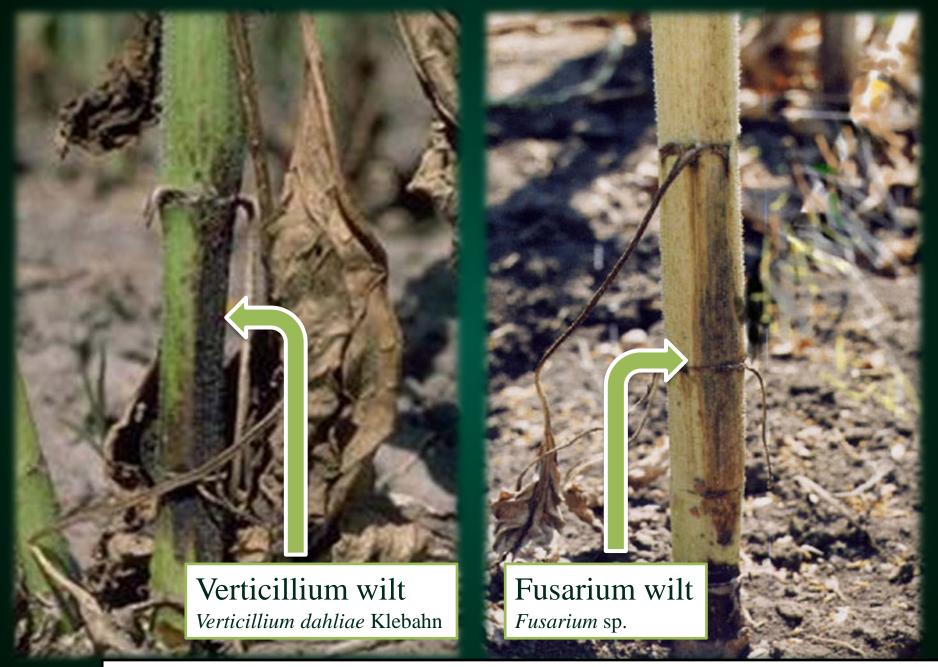
Collar-, stem- and seedling rots, damping-off, stunting, wilting, yellowing, and reduction in growth (Nahar and Mustaq, 2006)

Summer

Stalks are

Stalks are infected by ascospores/conidia Spring

Invade the roots
Spring



Crop debris bearing perithecia and sporodochium provide primary inoculum Winter

Pictures by Dr. Sam Markell and Dr. Tatiana Antonova/Dr. Tom Gulya

Pictures by Dr. Howard Schwartz (Verticillium wilt) and Dr. Tatiana Antonova/Dr. Tom Gulya (Fusarium wilt)

Fusarium sp. on sunflowers

- Fusarium a minor disease (Gulya et al., 1997)
- Severe problem in Russia (Dr. Tatiana Antonova, VNIIMK, personal communication)
 - Disease incidence up to 80%
 - Twenty species isolated from roots, stems, leaves, and heads
 - F. oxysporum Schltdl. most widely spread
 - > F. sporotrichioides (Sherb.) Bilai most aggressive
- Fusarium species are associated with seeds
 - Cause seedling blight, chlorosis, and wilting in particular (Abdullah and Al-Mosawi, 2010, Sharfun-Nahar and Mushtaq, 2007, Antonova *et al.*, 2002)
 - ► Infection reduces oil content (Antonova et al., 2002)

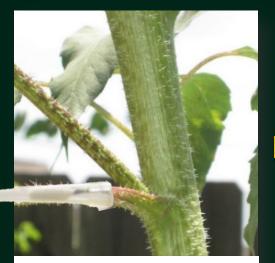
Characterizing *Fusarium* sp. associated with sunflower stem disease

- A total of 1146 stalks (from 2010 survey) were chopped, sterilized, and plated on potato dextrose agar (PDA) for 7-10 d.
- Plates scored for Fusarium sp. (Leslie et al., 2006)
- Fusarium species confirmed by sequencing and phylogenetic analysis of the translation elongation factor 1-alpha (EF1-α) gene (Jacobs *et al.*, 2004)
- Eight species confirmed in the U.S., namely, *F. acuminatum* (48.0% of the recovered isolates), *F. sporotrichioides* (35.8%), *F. graminearum* (7.4%), *F. avenaceum* (3.4%), *F. equiseti* (2.7%), *F. oxysporum* (1.4%), *F. culmorum* (0.7%), and *F. proliferatum* (0.7%).

Objectives

i. To compare the aggressiveness of eight *Fusarium* species in the greenhouse;

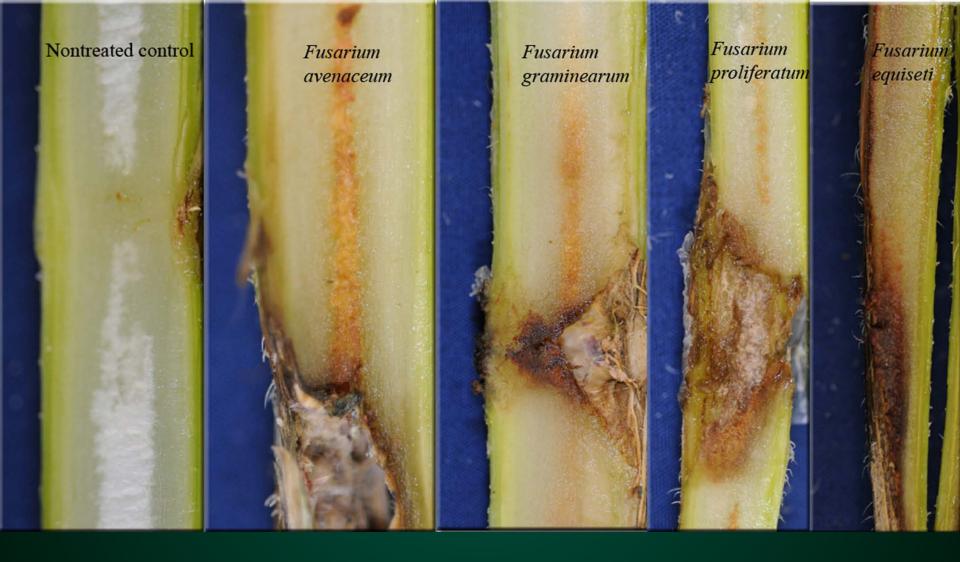
ii. To compare symptoms produced by most aggressive and wilt causing *Fusarium* species with *V. dahliae* over time.



Objective: Compare aggressiveness of Fusarium species

- Two inoculation methods:
 - >Stem-wound
 - >Petiole-wound
- Isolates representing eight species were used on three-week old (V4-V6) sunflower confection hybrid cv. 'CHS RH3701'.
- Sunflower seeds sown in 3.8-1 plastic pots and placed under a 16-h light/dark conditions at $25 \pm 2^{\circ}$ C.
- The inoculum was a mycelial plug (5 mm in diameter).
- Six replications (plants) established for each isolate using a completely randomized design.
- Plants were assessed for lesion development at 14-d.

The micropipette tip containing the inoculum placed over cut petiole


5 mm diameter inoculum on stalk using micropipette tip

NDSU NORTH DAKOTA STATE UNIVERSITY

Pictures by Dr. Sam Markell

• Lesion length (vascular discoloration, external) and inter-nodal/petiole length (where the wound was made) was measured.

NDSU NORTH DAKOTA STATE UNIVERSITY

• The trial was analyzed on SAS v 9.3.

	Stem-wound		Petiole-wound
Fusarium species	Lesion length ^a	Vascular discoloration ^a	Lesion length ^a
	(%)	(%)	(%)
Non-treated	10.20 c	5.76 d	15.56 e
F. acuminatum	17.62 bc	60.15 b	71.76 bc
F. equiseti	63.29 a	83.32 a	83.35 ab
F. avenaceum	34.00 b	55.18 b	55.43 cd
F. culmorum	19.40 bc	40.84 bc	44.88 d
F. graminearum	17.43 bc	26.39 c	36.83 de
F. proliferatum	15.97 c	26.74 c	18.41 e
F. oxysporum	15.59 c	32.97 c	42.55 d
F. sporotrichioides	53.41 a	100.00 a	100.00 a
LSD $(p \le 0.05)$	16.75	19.42	21.41
<i>p</i> -value	< 0.0001	< 0.0001	< 0.0001

^a Means followed by the same letter are not significantly different at $p \le 0.05$ according to Fishers protected least significant difference (LSD) test.

Summary

- There were significant differences (p<0.0001) among the *Fusarium* species with regard to lesion length (%) and vascular discoloration (%).
- F. sporotrichioides and F. equiseti were the most aggressive species. Results are consistent with previous research (Antonova et al., 2002, Nahar and Mushtaq, 2007).
- *F. graminearum* and *F. proliferatum* were least aggressive; they were not significantly different (p< 0.0001) from *F. oxysporum*. To the best of our knowledge, this is the first report of *F. graminearum* on sunflowers.

In progress

To compare symptoms produced by most aggressive and wilt causing *Fusarium* species with *V. dahliae* over time.

Acknowledgements

North Dakota State University
ND Agricultural
Experiment Station

NDSU NORTH DAKOTA STATE UNIVERSITY

- Dr. Tatiana Antonova (VNIIMK, Russia)
- Dr. Shaukat Ali (SDSU)
- Dr. Charles Block (USDA-ARS, Ames, IA)
- Dr. Julie Pasche (NDSU)
- Dr. Markell's lab (Solji, Christian Taylor, Austin, Christian Steffen, Brett, Pratheeba, Erik, and Seunghyun)
- Dr. Gulya's lab (Megan Ramsett)
- Dr. Gudmestad's lab
- National Sunflower Association (NSA)

