Linkage group-specific BAC clones developed to identify corresponding sunflower chromosomes

Jiuhuan FENG Zhao LIU C. C. JAN

South Dakota State University North Dakota State University USDA-Agricultural Research Service

Jan 09-10 2013, Fargo ND

OUTLINE

♦ Background

- -- Linkage Group vs. Chromosome
- ♦ Identification of Linkage Group-specific BAC Clones
 - --Construction of BAC Libraries
 - --Screening of BAC Libraries
- ♦ Development of Sunflower Cytogenetic Map
 - --FISH Mapping by Anchored BAC Clones
 - --Integrating the RFLP and SSR Linkage Groups
- ♦ Summary and Outlook

Linkage Group vs. Chromosome

Background

Sunflower genome size ~3500Mb --8 times of rice (430Mb) --28 times of *Arabidopsis* (125Mb)

Cuellar et al 1996

Schrader et al 1997

Partial references reported on chromosome karyotypes and secondary constructions in sunflower

	Chromosome type			Secondary constriction		Techniques and	Materials		
References	meta-	submeta-	acro-	satellite	45s rDNA	5s rDNA	FISH probes used if applicable		
Raicu <i>et al</i> .1976	10	3	4	3					
Al-Allaf et al. 1979	4	8	5	3				HI, HB, HR, HX	
Cuellar <i>et al</i> . 1996	4	8	5	3				HA89, hybrid	
Schrader <i>et al.</i> 1997	13		4	3	4	2	C-banding; 45s rDNA: VER17 5s rDNA	HA89	
Cuellar <i>et al</i> . 1999	4	8	5 ^a	3	3	2	C-banding; 45s rDNA: pTa71 5s rDNA: 36pBG13	H. argophyllus; H. annuus	
Vanzela <i>et al</i> . 2002				2,3,4 (2x) 4 (4x) 6 (6x)	2,3,4 (2x) 4 (4x) 6 (6x)		C-banding C-CMA banding 45s rDNA: pTa71	diploid (2x) tetraploid (4x) hexaploid (6x)	
Ceccarelli et al. 2007	13		4	3	4		tandem repeats 45s rDNA:pTa71	HA89, RA20031, HOR	
Talia <i>et al</i> . 2010	12	1	4 <i>ª</i>	3	3		repetitive retrotransposon- like sequences; homologous rDNA	HA89	

Linkage Group vs. Chromosome

Linkage Group vs. Chromosome

17 Linkage groups \longleftrightarrow 17 Chromosome pairs

BAC-FISH: the use of genomic DNA cloned in large-insert vectors such as BAC in combination with FISH, called BAC-FISH

BAC/BIBAC Libraries

BAC-bacterial artificial chromosome BIBAC-transformation-competent binary BAC

- -- Collection of hundreds or thousands of **BAC clones**
- -- Maintained in labeled arrays

Construction of BAC L Sunflower BA	The limita a single en low genon smaller ins	tions: zyme ne coverage sert sizes			
Author	Enzyme	Coverage	Insert size	Material	
Gentzbittl et al. 2002	HindIII	4-5 fold	80 kb	HA 821	
(France)					
Özdemir et al.2004	HindIII	1.9 fold	60 kb	RHA 325	
(Turkey)					
Bouzidi et al. 2006	HindIII	5 fold	118kb	YDQ	
(France)					
CUGI	HindIII	8.3 fold	125kb	HA 383	
(USA)					
CNRGV	HindIII	9.0 ×	132kb	HA412	
(France)	<i>Bam</i> HI	2.6×	114kb	HA412	
	<i>Eco</i> RI	2.2×	93kb	HA412	

A general scheme for construction of a BAC library

Construction of BAC Libraries

Partial enzyme digest HindIII unit/reaction 0.8 .7 .6 .5 .45 .4 .3 .2 0 λ kb 800 400 300 200 100

pECBAC1/BamH1

Plasmid with insert

Jackson et al. 1999, 17:581-587

Positive colonies

Plate duplication

Construction of BAC Libraries

Sunflower whole BAC libraries

Features	BAC library	BIBAC library	Combined
Cloning vector	pECBAC1	pCLD04541	2
Restriction enzyme	BamHI	HindIII	2
No. of clones arrayed	107,136	84,864	192,000
No. of 384-well microtitres	279	221	500
Average insert size (kb)	140	137	139
Insert-empty clones (%)	0.44%	0.0	<0.5%
cpDNA clones (%)	2.10%	2.59%	2.35%
mtDNA clones (%)	0.03%	0.04%	0.04%
Genome equivalents	5.0 ×	3.9 ×	<u>8.9</u>

Major Features:

Two enzyme/ vector combinations Larger insert size Deeper coverage 1st sunflower BIBAC library

Giving a 99 % probability Of finding any gene of interest

Screening the BAC Libraries

20 RFLP linkage groups (Jan et al. 1998) Choosing 36 RFLP markers

Identify the positive clones by two-step screening

1st pool hybridization

2nd pool hybridization

	C1	C2	C3	C4
R1	overgo1	overgo2	overgo3	overgo4
R2	overgo1	overgo2	overgo3	overgo4
R3	overgo1	overgo2	overgo3	overgo4
R4	overgo1	overgo2	overgo3	overgo4

Screening the BAC Libraries

Linkage	Overgos	Number		Positive clones
group	(RFLP marker)	of hits	BAC library (BamHI)	BIBAC library (HindIII)
1	20A5	3	176D13	374I4 386G6
2	1E6	1		438A20
	7 F 3	3		408N21 375M11 389P23
	5E4	2		387P13 455J18
3	9F2	5	59A24 85F5 95G15	405C18 412G14
	4B6	4		382L5 464F20 479B11 479C23
	21D2	0		
13	15E3	11	67L19 81K21 92L2 112C20	372M22 376A19 397M4 402M16 447G18 480G16 498N8
	11A6	4		380F19 407K6 421M12 509I15
14	8E4	5	62M10 163M16	422O1 426G11 490B11
	6B3	0		
15	8C4b	6		367P3 382M16 437F7 445H4 466O6 466O7
10	9D1	1		40105
	15D4	0		10105
16	8A1	10	61L11 76D23 78G18 84A4 155C8	425P7 446E13 453H24 460G12 505K20
17	10B5a	8	75B15* 110G13 159L12* 159N24* 183A20*	368F18* 390A9 428O6
18	13E4	14	84K7 88C11 130H14 204N17	369D23 384J13 420L5 421E12 426F15 435K3 467G11
				474E15 481N22 483C7
	14E5§	6	63A12* 159l12 160C8*	395G7* 466I23* 480H15*
19	21F1	10	75B15*151G15 159L12* 159N24* 160C8*	368F18* 395G7* 477M12
	e		<u>1780</u> 1 183A20*	
Total	36	195	76	119

NOTE: Asterisk "*" indicates the clones hit by different, unlinked overgos. § Indicates the overgos15D2 and 14E5 share a 13-bp sequence.

19 linkage group — 36 RFLP markers — 195 positive clones

Fluorescence in situ hybridization(FISH) by BAC clones

--A technique that hybridizes a single stranded fluorescently labeled DNA probe to complementary target sequences on chromosome

Chromosome on

slide

195 positive clones

Cross-hybridization

--Due to repetitive DNA sequences of the sunflower genome, non-specific hybridization is a common problem in FISH

- Blocking DNA: Randomly sheared genomic DNA blocks repetitive DNA sequences and prevents non-specific hybridization
- Stringency washes

Species	% of repetitive sequences
Arabidopsis	10
Rice	35
Soybean	59
Maize	66
Sunflower	78

100× blocking DNA

Repetitive DNA sequences

FISH image of a BAC clone with 45S rDNA sequences on nucleolus organizing region (NOR). The chromosomes were counterstained with DAPI (blue) and PI (red).

FISH signals on the pericentromeric heterochromatic region of almost all sunflower chromosomes, and reflecting the distribution of repetitive DNA

Single/low-copy DNA sequences

BAC clone 59A4 generated a unambiguous FISH signal (arrow) on a chromosome pair with 50×blocking DNA

9F2

Bi-color FISH

Bi-color FISH simultaneously determined the physical localizations of two BACs, 481K13 (red) and 155P12 (green), which correspond to RFLP markers 2B4 and 2D4, respectively, on LG5.

Rectify previous linkage maps

Two RFLP markers from LG15 and LG18 of Jan et al (1998) mapped to SSR-LG9 (Yu et al. 2003; Gedil et al 2001)

Integrate RFLP and SSR Maps

Coalescence of an independently developed RFLP map with SSR map

--Of 17 LGs, 13 LGs were cross-referenced by 40 shared RFLP marker loci; 4 RFLP LGs have not yet been unified into the SSR genetic map (Yu *et al.* 2003; Gedil *et al.* 2001).

--Genetic analysis of a F2 population from the cross of CMS HA89 x RHA280 to integrate the SSR and RFLP map.

	SSR	RFLP		
LG	ORS marker	LG	STS marker	
LG 6	10	LG 1	2	
LG 12	13	LG 4	6	
LG 14	11	LG 5	6	
LG 15	$+ \frac{14}{14}$	LG 8	3	
	49		17	

Partial linkage map of LG6 and ²¹ LG15 (Tang et al 2002) with linked RFLP markers (Jan et al 1998)

SSR-LG	RFLP-LG
(Yu et al)	(Jan et al)
1	12
2	14
3	11
4	13
5	6
6	4
7	9
8	7
9	15
10	16
11	17
12	5
13	2
14	l
15	8
16	3
17	10

Integrate Linkage Groups and Chromosomes

RFLP Markers selected for screening the libraries and the BAC/BIBAC clones used as FISH probes

Chrom.	SSR- LG	RFLP- LG	RFLP marker	BAC clone (No. cells examined for FISH	BIBAC clone (No. cells examined for FISH			
	10	20		image)	image)			
Ha01	1	LG12	10D6		389J8 (64), 438D10 (12)	•	II. 0 <i>4</i>	
Ha02	2	LG14	8E4	62M10 (14)			Ha04	
Ha03	3	LG11	10C4	60O16 (26), 150N10 ^b (21)				
			6E6	115B2 (22)		1502		380F19
Ha04	4	LG13	15E3	67L19 (22)	402M16 (6)	15E3		500117
			11A6		380F19 (5), 407K6 (6)		- 50	
Ha05	5	LG6	15D2	141K9 (29), 126N9 (10), 63A12 ^a		11A6	#	
				(21)			U	
Ha06	6	LG4	14A2	61N8 (31)			10 mil	67L19
Ha07	7	LG9	1C5	60L23 (15), 183P19 (14), 184P8				
				(9)				
Ha08	8	LG7	7C1	115K11 (8)			A B	
			21E6		429J21 (12)			
Ha09	9	LG15	8C4b		367P3 ^b (9), 437F7 (19), 445H4			
					(18)			
			9D1		401C5 (5)			
		LG18	13E4	84K7 (17)				
Ha10	10	LG16	8A1	78G18 (51)				
Ha11	11	LG17	10B5a	110G13 (10), 159N24 (23)	368F18 (12), 428O6 (5)			
$Ha12^t$	12	LG5	2B4		481K13 (18)			
			2D4	155P12 (19)				
Ha13	13	LG2	1E6		438A20 (8)			
			5E4		387P13 (18)			
$Ha14^t$	14	LG1	20A5		374I4 (7), 386G6 (5)			
Ha15	15	LG8	2E2	104I23 (7)				
			20F1	103H6 (27), 124A11 (9)	470I10 ^b (10)			
Ha16	16	LG3	9F2	59A24 (45)				
			4B6		464F20 (15)			
Ha17	17	LG10	4D1		381J20 ^{<i>b</i>} (16)			
			7D5	124J4 (12), 135J2 ^{<i>a</i>} (12)				
Total			27	24 (474)	20 (270)			

Sunflower Cytogenetic (FISH) Map

Assignment of RFLP linkage groups to individual chromosomes

Using the mapped cDNA-derived RFLP markers, 195 linkage group-specific BAC/BIBAC clones were identified

Of 60 BAC clones analyzed, 44 was used for FISH mapping

Of these, 27 BAC clones, as chromosome-specific markers, were placed on the cytogenetic map of cultivated sunflower

This allowed us to assign each genetic linkage group to a specific sunflower chromosome

Summary and Outlook

◆ The established BAC-FISH techr more BAC clones and to develop a

Chromosome-specific cytogenetic identifying sunflower cytogenetic st chromosomes in interspecific cross

BAC libraries provide resource e
 BAC-end sequencing and fingerpri

♦ With the sunflower genome sequency of the sequences, validate discretation and fill the gaps in recombination

ACKNOWLEDGEMENTS

Brady A. Vick

Hong-Bin Zhang (Texas A&M University)

Lisa Brown

Wei Sun

Dr. Zhang's Lab in Borlaug Center, TX

Thank you !

