NORTH DAKOTA STATE UNIVERSITY

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

Reevaluation of *Phomopsis*species affecting sunflowers in the United States

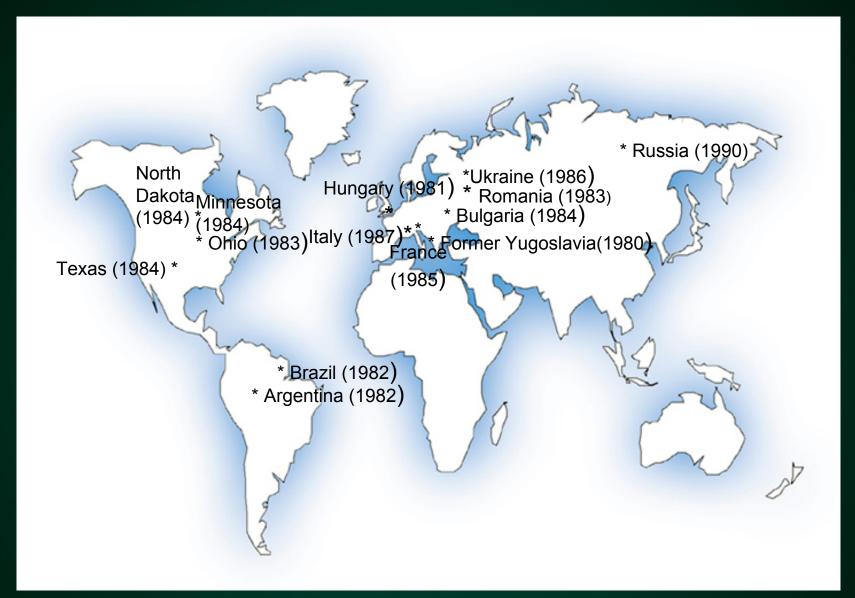
Febina Mathew, Erik Heitkamp, Sam Markell, Kholoud Alananbeh, Nikolay Balbyshev, Lisa Castlebury, and Thomas Gulya

NDSU NORTH DAKOTA STATE UNIVERSITY

Phomopsis on sunflowers

- Phomopsis stem canker (PSC) frequently causes serious economic damage on sunflowers in other countries.
- In the U.S., very low incidence and limited damage occurred before 2010.
- In 2010 and 2011, PSC continued to increase in the North Central States

Phomopsis on sunflowers



NDSU NORTH DAKOTA STATE UNIVERSITY

Tracing Phomopsis

- *Phomopsis* (Sacc.) Bubák, 1905 (teleomorph *Diaporthe* Nitschke, 1870) was first applied to anamorphs of nectriaceous fungi
- Difficult to distinguish morphologically
- Host association was the basis for species identification in *Diaporthe* and *Phomopsis* (van Rensburg *et al.* 2006)

Diaporthe helianthi

NDSU NORTH DAKOTA STATE UNIVERSITY

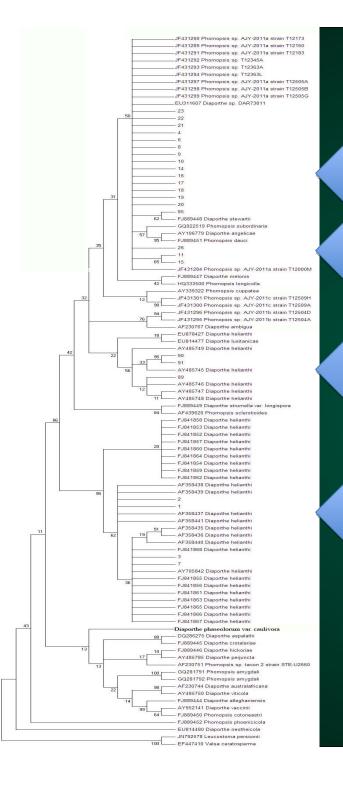
Diaporthe phaseolorum

NDSU NORTH DAKOTA STATE UNIVERSITY Diaporthe helianthi Diaporthe stewartii Diaporthe phaseolorum Diaporthe gulyae Diaporthe kochmanii Diaporthe kongii

Objective

Characterization of the species and their prevalence causing *Phomopsis* on sunflowers in the United States

Lisa Castlebury


 Systematicist – USDA Beltsville, MD

Materials & Methods: 2010

- 1150 stalks were chopped, sterilized, and plated on potato dextrose agar (PDA) for 7-10 d.
- Phomopsis isolates were hyphal tipped
- Several dozen isolates recovered
- The rDNA-ITS region was amplified and sequenced with primers ITS4 and ITS5 (White *et al.*, 1990)
- Analysis was performed using BLASTN via the NCBI database (www.ncbi.nlm.nih.gov).

Isolates from South Dakota - 2010 collection, now called "Diaporthe gulyae"

A single isolate of *Diaporthe stewartii* from South Dakota - 2010 collection

Two isolates of *Diaporthe helianthi* from Texas - 2010 collection), A single isolate of *Diaporthe helianthi* from South Dakota - 2010 collection

Four isolates of *Diaporthe helianthi* from Minnesota and North Dakota- 2010 collection

2011

- 163 fields randomly sampled (ND, MN, SD).
- Additional samples (627) were also received through NSA survey and other contacts.
- Additionally, hierarchical sampling of 9 infected fields (3 MN, 3 ND and 3 SD) was completed; 405 stems

Results

- An approximate total of 900 isolates were retrieved from both sampling strategies
- 150 isolates from randomly sampled fields were sequenced.
 - 86 isolates (ND, MN, SD) were D. helianthi
 - 2 isolates (SD, ND) were D. gulyae

Results and Discussion

- There are *a total of six species* causing phomopsis on sunflowers in the world as of 2011
 - -Three confirmed in the US.
 - D. helianthi, D. gulyae and D. stewartii
- Greenhouse trials to assess virulence in U.S.
- Gulya et al. evaluation of resistance in the field.

Fungicides

Treatment/Rate	Timing	
Non-Treated	NA	
Headline 6 fl oz	V10	
Headline 6 fl oz	V10, R1	
Headline 6 fl oz	V10, R5	
Headline 6 fl oz	V10, R1, R5	
Headline 6 fl oz	R1	
Headline 6 fl oz	R1, R5	
Headline 6 fl oz	R5	

Treatment/Rate	Timing	
Non-Treated	NA	
Headline 6 fl oz	V10	
Headline 6 fl oz	V10, R1	
Headline 6 fl oz	V10, R5	
Headline 6 fl oz	V10, R1, R5	
Headline 6 fl oz	R1	
Headline 6 fl oz	R1, R5	
Headline 6 fl oz	R5	
Folicur / Propulse	R1, R5	
Headline / Priaxor	R1, R5	
Headline /Quash	R1, R5	
Tilt / Quadris	R1, R5	
Aproach /Vertisan	R1, R5	

Treatment/Rate	Timing	Rust R6	
Non-Treated	NA	3.73 a	
Headline 6 fl oz	V10	2.20 b	
Headline 6 fl oz	V10, R1	1.53 cde	
Headline 6 fl oz	V10, R5	1.55 cde	
Headline 6 fl oz	V10, R1, R5	0.64 fg	
Headline 6 fl oz	R1	2.43 b	
Headline 6 fl oz	R1, R5	0.86 efg	
Headline 6 fl oz	R5	1.65 cd	
Folicur / Propulse	R1, R5	0.44 g	
Headline / Priaxor	R1, R5	0.70 fg	
Headline /Quash	R1, R5	0.60 fg	
Tilt / Quadris	R1, R5	0.78 fg	
Aproach /Vertisan	R1, R5	1.09 defg	

Treatment/Rate	Timing	Rust R6	Phomopsis
Non-Treated	NA	3.73 a	2.95 a
Headline 6 fl oz	V10	2.20 b	2.1 b
Headline 6 fl oz	V10, R1	1.53 cde	1.08 def
Headline 6 fl oz	V10, R5	1.55 cde	1.9 bc
Headline 6 fl oz	V10, R1, R5	0.64 fg	0.43 f
Headline 6 fl oz	R1	2.43 b	1.63 bcd
Headline 6 fl oz	R1, R5	0.86 efg	0.65 ef
Headline 6 fl oz	R5	1.65 cd	2.0 bc
Folicur / Propulse	R1, R5	0.44 g	0.53 ef
Headline / Priaxor	R1, R5	0.70 fg	1.08 def
Headline /Quash	R1, R5	0.60 fg	0.90 def
Tilt / Quadris	R1, R5	0.78 fg	1.05 def
Aproach /Vertisan	R1, R5	1.09 defg	1.25 cde

Treatment/Rate	Timing	
Non-Treated	NA	
Headline 6 fl oz	V10	
Headline 6 fl oz	V10, R1	
Headline 6 fl oz	V10, R5	
Headline 6 fl oz	V10, R1, R5	
Headline 6 fl oz	R1	
Headline 6 fl oz	R1, R5	
Headline 6 fl oz	R5	
Folicur / Propulse	R1, R5	
Headline / Priaxor	R1, R5	
Headline /Quash	R1, R5	
Tilt / Quadris	R1, R5	
Aproach /Vertisan	R1, R5	

Treatment/Rate	Timing	Yield	
Non-Treated	NA	1081 f	
Headline 6 fl oz	V10	1535 cdef	
Headline 6 fl oz	V10, R1	1831 abcde	
Headline 6 fl oz	V10, R5	1369 def	
Headline 6 fl oz	V10, R1, R5	2193 abc	
Headline 6 fl oz	R1	1666 bcdef	
Headline 6 fl oz	R1, R5	2133 abc	
Headline 6 fl oz	R5	1178 ef	
Folicur / Propulse	R1, R5	2486 a	
Headline / Priaxor	R1, R5	2045 abcd	
Headline /Quash	R1, R5	2342 ab	
Tilt / Quadris	R1, R5	1963 abcd	
Aproach /Vertisan	R1, R5	1936 abcd	

Treatment/Rate	Timing	Yield	Test Weight
Non-Treated	NA	1081 f	18.62 g
Headline 6 fl oz	V10	1535 cdef	19.97 ef
Headline 6 fl oz	V10, R1	1831 abcde	21.09 cde
Headline 6 fl oz	V10, R5	1369 def	20.42 ef
Headline 6 fl oz	V10, R1, R5	2193 abc	22.52 a
Headline 6 fl oz	R1	1666 bcdef	19.63 fg
Headline 6 fl oz	R1, R5	2133 abc	21.74 abcd
Headline 6 fl oz	R5	1178 ef	20.47 def
Folicur / Propulse	R1, R5	2486 a	22.64 a
Headline / Priaxor	R1, R5	2045 abcd	22.02 abc
Headline /Quash	R1, R5	2342 ab	22.41 ab
Tilt / Quadris	R1, R5	1963 abcd	21.76 abcd
Aproach /Vertisan	R1, R5	1936 abcd	20.89 cdef

Acknowledgments

- Scott Halley
- Andrew Friskop
- Michael Wunsch
- Blaine Schatz
- Chris Wharam

- National Sunflower Association
- NSA Surveyors

Disease cycle of Phomopsis

- The disease is most severe under conditions of prolonged high temperatures and high humidity.
- The fungus overwinters as mycelium and perithecia on stem debris left on the soil.
- Spores released
 - Splash and wind dispersed
 - Ascospores germinate in the guttation drops at the leaf margin to initiate infection.
 - Leaf → petiole → stem (1 month)
 - The first resulting lesions on the stems carry pycnidia with pycnidiospores.

Tracing Phomopsis on sunflowers

- *Phomopsis* sp. was identified on sunflower stems in 1980 in Yugoslavia.
 - Identity of causal agent was controversial.
- Differences noticed among Yugoslavian *Phomopsis* (Muntañola-Cvetkovic' et al. 1985)
 - produced β-conidia only
 - Differences in symptoms on plants, responses of sunflower plants to inoculation under controlled conditions, etc.
 - Authors (Aćimović and Štraser, 1982) concluded sunflower is attacked by two *Phomopsis* species.

Tracing Phomopsis on sunflowers

- United States (Ohio) 1983 (Ohio)
- Yang et al. (1984) published the first verified report of D. helianthi on the cultivated sunflower in Texas
- Biological differences between USA (α- and β-conidia or both) and Yugoslavian isolates (β-conidia)
 - Possibility of several pathogenic Phomopsis species or biotypes in USA and Europe (Gulya *et al.*, 1997)

Results - 2010

- 99 isolates recovered
 - -85 = SD, 7 = ND, = MN, 2 = TX
- ML tree generated from ITS of the nuclear ribosomal DNA (rDNA) of reference *Phomopsis* sequences of Thompson *et al.* (2011) and isolates collected in 2010.
- Reference sequences are indicated with GenBank accession numbers followed by the species.
- Three species identified and confirmed— D. helianthi, D. gulyae and D. stewartii

Tracing Phomopsis on sunflowers

- More than one Phomopsis species can occur on a single host (Mostert *et al.* 2001, Santos & Phillips 2009).
- A total of six species of *Phomopsis* on sunflowers across the world as of Dec 2011.
 - Diaporthe helianthi continues to be predominant on sunflowers (Mathew, unpublished)

