Prospects for managing Sclerotinia head rot with fungicides LESSONS FROM FIELD TRIALS CONDUCTED IN 2011

Photos: Leonard Besemann

Michael Wunsch, Michael Schaefer and Blaine Schatz, NDSU Carrington Research Extension Center Scott Halley, NDSU Langdon Research Extension Center Robert Harveson, University of Nebraska Panhandle Research Extension Center Leonard Besemann, NDSU Carrington REC Oakes Irrigation Research Site Sam Markell, NDSU Department of Plant Pathology

Research questions

FUNGICIDE EFFICACY FOR MANAGEMENT OF SCLEROTINIA HEAD ROT

- (1) Fungicides that are effective against Sclerotinia on other crops
- (2) Experimental fungicides that may be registered on sunflower

Carrington, ND (M. Wunsch); Langdon, ND (S. Halley); Scottsbluff, NE (R. Harveson)

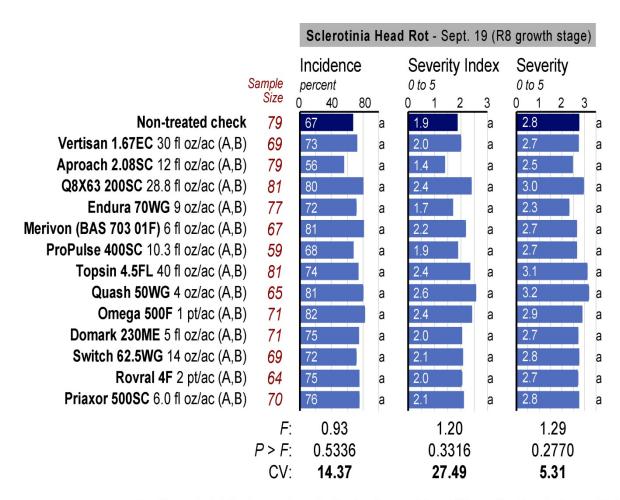
Research questions

FUNGICIDE EFFICACY FOR MANAGEMENT OF SCLEROTINIA HEAD ROT

- (1) Fungicides that are effective against Sclerotinia on other crops
- (2) Experimental fungicides that may be registered on sunflower

Carrington, ND (M. Wunsch); Langdon, ND (S. Halley); Scottsbluff, NE (R. Harveson)

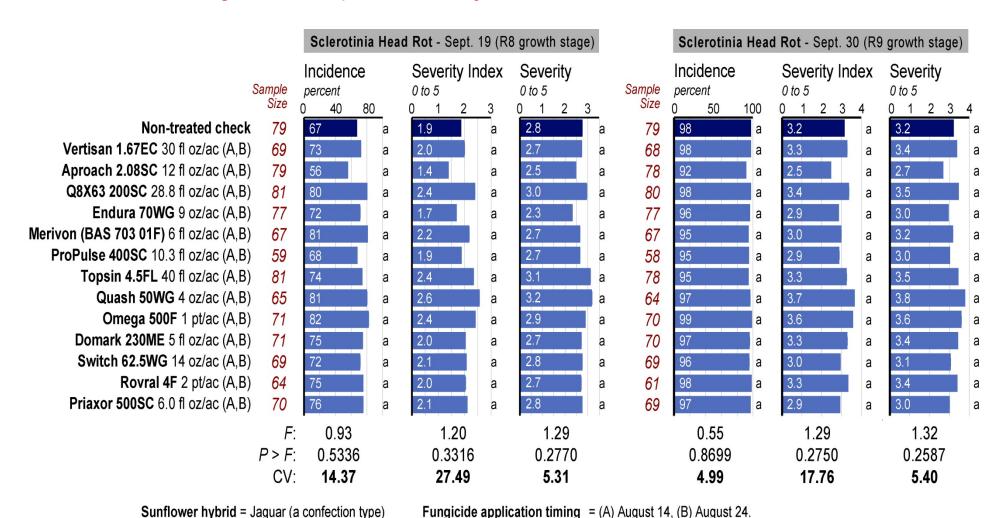
SUSCEPTIBILITY OF SUNFLOWERS TO SCLEROTINIA HEAD ROT AFTER FLOWERING


- -Susceptibility after flowering has long been suspected
- -Window of susceptibility will influence fungicide timing

Carrington, ND (M. Wunsch); Langdon, ND (S. Halley); Oakes, ND (L. Besemann)

Fungicide efficacy - Carrington

NO DIFFERENCES IN EFFICACY OBSERVED


Sunflower hybrid = Jaguar (a confection type)

Fungicide application timing = (A) August 14, (B) August 24.

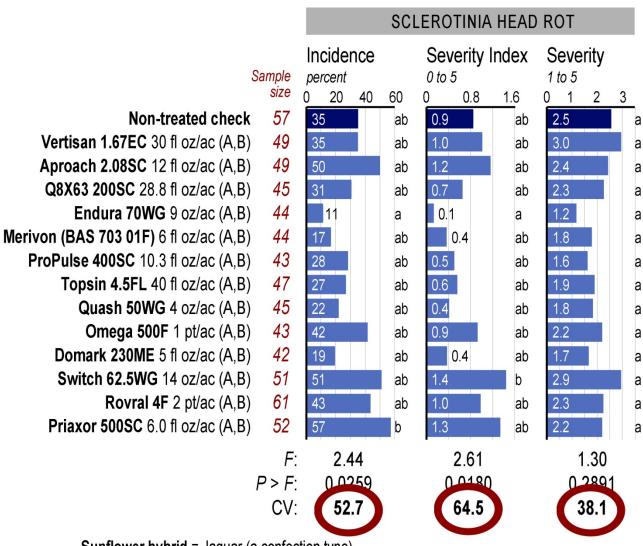
Fungicide efficacy - Carrington

NO DIFFERENCES IN EFFICACY OBSERVED

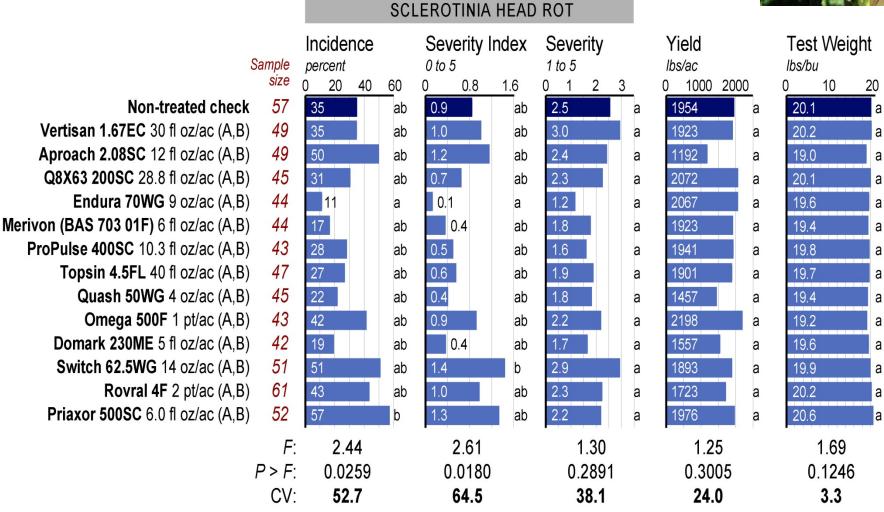
... but high disease pressure may have overwhelmed treatments



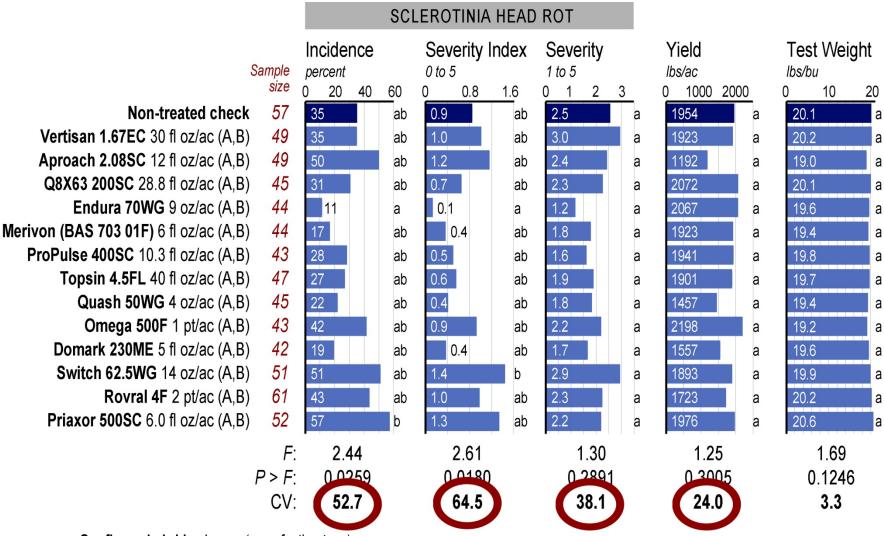
Fungicide efficacy - Carrington


DISEASE PRESSURE OPTIMAL – and treatment differences detected

Sunflower hybrid = Jaguar (a confection type)


BUT RESULTS HIGHLY VARIABLE – impaired ability to discern efficacy differences

Sunflower hybrid = Jaguar (a confection type)


DIFFERENCES IN YIELD AND QUALITY NOT DETECTED

Sunflower hybrid = Jaguar (a confection type)

... but data were highly variable, impairing ability to discern differences

Sunflower hybrid = Jaguar (a confection type)

Fungicide efficacy - Scottsbluff

Disease establishment was unsuccessful

- -very hot and windy in August 2011
- -artificial establishment of Sclerotinia has been successful in other crops in previous years
- -irrigation with a pivot, not microsprinklers

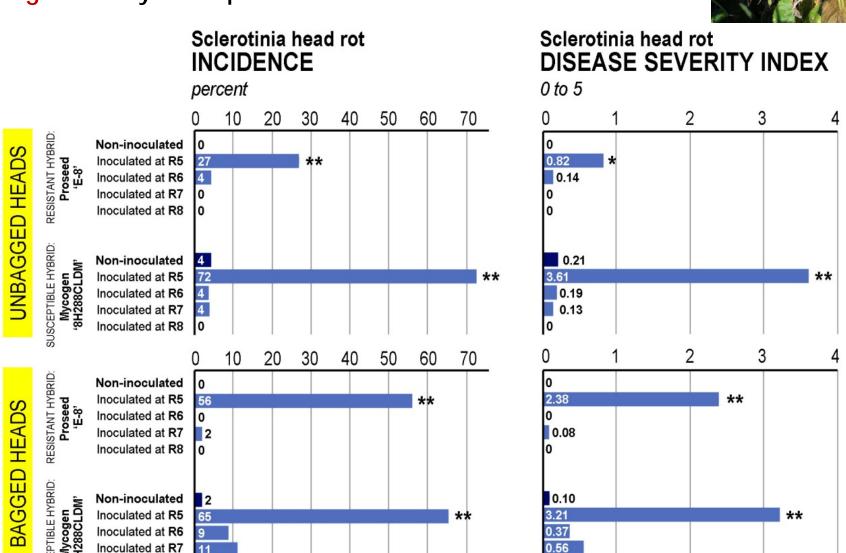
Fungicide efficacy – FUTURE APPROACHES

All locations: Larger plot sizes

-Harvested plot size = 5 ft x 26 ft or 5 ft x 29 ft

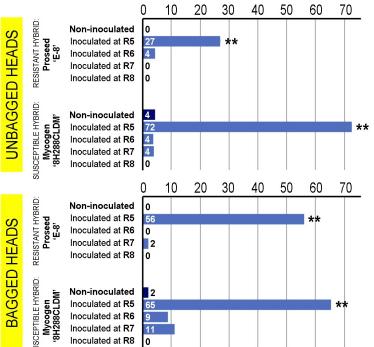
-Number of plants per plot = 48 - 53 (*if* confection sunflowers; 16,000 plants/ac) = 65 - 73 (*if* oil sunflowers; 22,000 plants/ac)

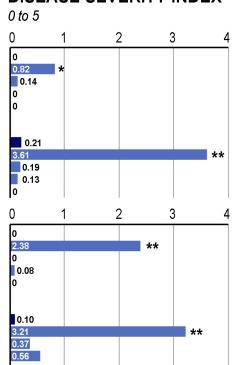
Carrington: less aggressive misting


Scottsbluff: a microsprinkler misting system will be used

Susceptibility to Sclerotinia head rot after flowering

Carrington: Only susceptible at R5


Inoculated at R8


Carrington:

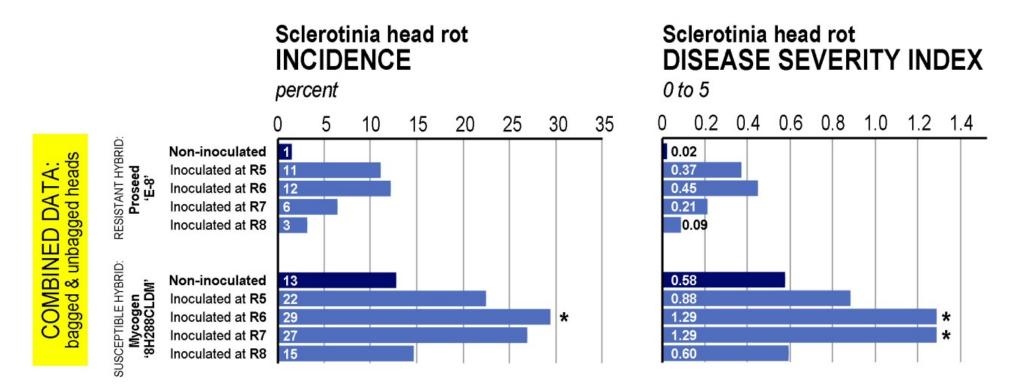
Sclerotinia head rot INCIDENCE

percent

Sclerotinia head rot DISEASE SEVERITY INDEX

Incidence:

DSI:

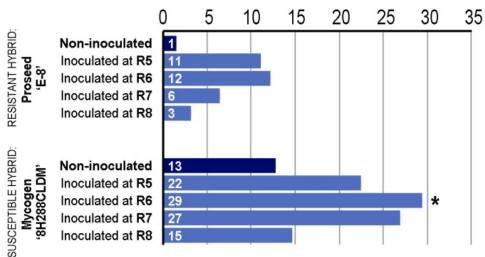

Effect	DF1	DF2	F	P > F	<u>Effect</u>
bag	1	5	2.27	0.1922	bag
hybrid	1	5	17.62	0.0085	hybrid
trt	4	20	116.4	< 0.0001	trt
bag*hybrid	1	62	1.45	0.2324	bag*hybrid
bag*trt	4	62	1.27	0.2903	bag*trt
hybrid*trt	4	62	6.28	0.0002	hybrid*trt
bag*hybrid*	trt	4	62	4.24 0.0042	bag*hybrid*t

<u>Effect</u>	DF1	DF2	F	P > F	
bag	1	5	2.79	0.1454	
hybrid	1	5	21.13	0.0059	
trt	4	20	105.8	< 0.000	1
bag*hybrid	1	62	2.19	0.1437	
bag*trt	4	62	1.57	0.1944	
hybrid*trt	4	62	12.67	< 0.000	1
bag*hybrid*	trt	4	62	5.29	0.0010

Susceptibility to Sclerotinia head rot after flowering

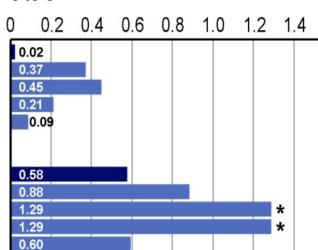
Langdon: Susceptible at R6 and R7

Data from bagged and unbagged heads were combined:


- There was no difference in disease levels between bagged and unbagged heads (alpha = 0.05)
- Bagging heads had no significant interaction effects with hybrid or with inoculation timing

Langdon:

Sclerotinia head rot INCIDENCE


COMBINED DATA: bagged & unbagged heads

9

Sclerotinia head rot DISEASE SEVERITY INDEX

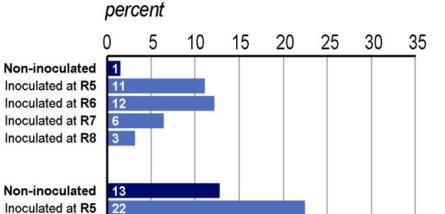
0 to 5

Incidence, bagged & unbagged heads separate:

Effect	DF1	DF2	F	P > F	
bag	1	3	1.98	0.2536	
hybrid	1	3	10.48	0.0479	
trt	4	12	1.64	0.2287	
bag*hybrid	1	39	2.38	0.1309	
bag*trt	4	39	0.27	0.8985	
hybrid*trt	4	39	0.73	0.5765	
bag*hybrid	*trt	4	39	0.80	0.531

DSI, bagged & unbagged heads separate:

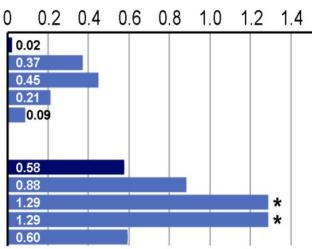
Effect	DF1	DF2	F	P > F	
bag	1	3	2.54	0.2094	
hybrid	1	3	11.22	0.0441	
trt	4	12	1.75	0.2047	
bag*hybrid	1	39	1.10	0.2999	
bag*trt	4	39	0.54	0.7094	
hybrid*trt	4	39	1.59	0.1955	
bag*hybrid	*trt	4	39	0.43	0.7884


COMBINED DATA: bagged & unbagged heads

RESISTANT HYBRID:
Proseed
'E-8'

SUSCEPTIBLE HYBRID: Mycogen '8H288CLDM'

Langdon:



*

Sclerotinia head rot DISEASE SEVERITY INDEX

Incidence, bagged & unbagged heads combined:

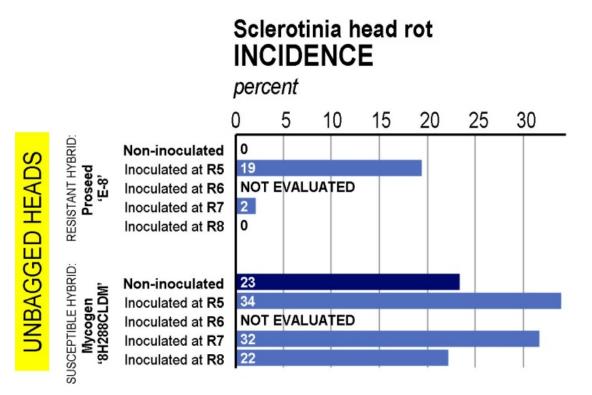
29

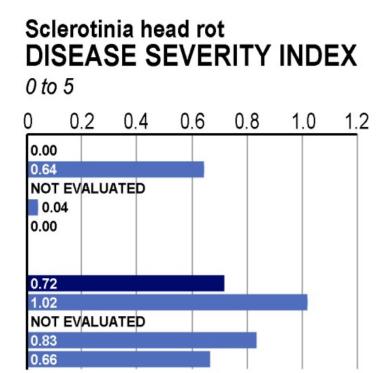
27

<u>Effect</u>	DF	1 DF2	F	P > F
hybrid	1	7	19.93	0.0029
trt	4	56	3.59	0.0112
hybrid*trt	4	56	0.48	0.7474

Inoculated at R6

Inoculated at R7


Inoculated at R8


DSI, bagged & unbagged heads combined:

<u>Effect</u>	DF	1 DF2	F	P > F
hybrid	1	7	24.13	0.0017
trt	4	56	4.05	0.0059
hybrid*trt	4	56	1.02	0.4047

Susceptibility to Sclerotinia head rot after flowering

Oakes: Data inconclusive

INCIDENCE:						DSI:				
Effect	DF	1 DF2	F	P > F		Effect	DF	1 DF2	F	P > F
hybrid	1	3	20.62	0.0200		hybrid	1	3	15.94	0.0282
trt	3	18	3.21	0.0476		trt	3	18	3.26	0.0457
hybrid*trt	3	18	0.59	0.6297		hybrid*trt	3	18	0.49	0.6904

Prospects for managing Sclerotinia head rot with fungicides: LESSONS FROM FIELD TRIALS CONDUCTED IN 2011

Fungicide efficacy:

- •Larger plot sizes needed to discern differences
- Misting must be calibrated properly

Fungicide timing:

•Applications may be needed after flowering during periods of cool, wet weather

Thank you!

Photos: Leonard Besemann

Funding support: Confection growers National Sclerotinia Initiative