Molecular mapping of the rust resistance genes in sunflower: results and prospects

Lili Qi¹, Li Gong^{1,2}, Tom Gulya¹, Brent Hulke¹, Brady Vick¹, Gerald Seiler¹, Sam Markell²

¹USDA-ARS, Northern Crop Science Laboratory ²Department of Plant Pathology, North Dakota State University

Sunflower production in North America has recently been threatened by the evolution of new virulent pathotypes of sunflower rust

- Thirty-nine different rust races were identified in 2008
- Rust races 334 and 336 were dominant over three years
- Race 777 is the most virulent and is able to infect all nine differentials
- Presently, race 777 remains at a low frequency in the rust populations, but can potentially cause serious epidemics if it becomes prevalent
- The majority of commercial hybrids are susceptible to the new predominant and virulent races

Rust resistance sources from USDA Sunflower unit

		React		
Sunflower line	Туре	race 336	race 777	Putative rust gene (s)
Inbred lines				
CM 29*	OB	R	S	R ₂
HA-R2	OB	R	S	R 5
HA-R3	OB	R	MR	R ₄
HA-R6	CB	R	R	
HA-R8	OR	R	R	
RHA 397	OR	R	R	
RHA 464	OR	R	R	
Introgression lines				
PH3	OB	R	R	
PH4	OB	R	R	
PH5	OB	R	R	
PH6	OB	R	S	
TX16R	OB	R	R	
Rf ANN-1742	OR	R	R	

OB: oil-B line; OR: oil-R line; CB: confection-B line;

CR: confection-R line. * an old Canadian line

Qi et al. 2011 Phytopathol

Limited durability of single *R*-genes

- Race-specific *R*-genes can be overcome by new pathotypes
- There is an urgent need for strategies to develop inbred lines with durable resistance to the disease
- The concept of incorporating multiple *R*-genes into a single cultivar to achieve greater durability is referred to as 'gene pyramiding'
- The selection of genotypes with gene combinations can be difficult using conventional methods
- Mapping rust resistance genes and developing robust molecular markers will facilitate this breeding approach and add precision to selection

Procedure for mapping of rust *R*-genes I. Mapping population development Parent 1 (Susc) × Parent 2 (Resist) F₂ individuals F₃ families

II. Rust screening of F_2 and F_3 populations

 I. F₂ population: 150-200 plants
II. F₂-derived F₃ population: 150-200 families 20 plants/per family, a total of 3,000-4,000 plants

III. Marker screening (500-800 DNA markers)

a. Identification of polymorphic markers for the two parental lines

b. Bulked segregant analysis to determine genomic region associated with the rust resistance gene

S-bulk: DNA from ten homozygous susceptible F_2 plants R-bulk: DNA from ten homozygous resistant F_2 plants

c. Scoring all individuals of a mapping population with polymorphic markers associated with rust resistance to determine their genotypes

P2 2	F ₂ plants																																						
•	•					1			= 1																		1	11.81	-	1000		•					1101		

IV. Genetic linkage analysis

Combine rust phenotypic and marker data to determine marker order and map distance

Progress of molecular mapping of the rust *R*-genes in sunflower

Eight rust resistance genes, R₁-R₅, R₁₀, P_{u6}, and R_{adv}, were previously identified in sunflower
R₁ gene in MC 69 and R_{adv} gene in P2 and RHA 340 lines were mapped to linkage groups (LGs) 8 and 13, respectively, and are no longer effective against the predominant and virulent rust races in U.S.

*R*₂ gene in MC 29 was mapped to LG9 and is resistant to race 336

> Lawson et al. 1998, Mol Breeding Lawson et al. 2010, Mol Breeding Yu et al. 2003, Crop Science

We have recently mapped four rust resistance genes in the different linkage groups of sunflower

R₁₁ in Rf ANN-1742 resistant to races 336 and 777

LG13

R₁₂ in RHA 464 resistant to races 336 and 777

LG11

Future work

I. Integrate phenotypic and SSR data of the genes R_4 , R_5 , and R_{11} with SNP data to identify SNP markers linked to the *R*-genes

- II. Continue mapping of the rust resistance genes in HA-R6, HA-R8, and RHA397
- HA-R6 is the only confection sunflower resistant to races 336 and 777, and the *R*-gene originated from a breeding line from France
- Rust resistance in HA-R8 is derived from a Native American (Havasupai) landrace from Arizona
- Rust resistance in RHA 397 originates from germplasm obtained from South Africa

III. Provide long-term durability of resistance to rust

a. Rust *R*-gene pyramiding in oil sunflower

HA-R2 × RHA464 HA-R3 × RHA464 HA-R3 × HA-R2 (R_5+R_{12}) (R_4+R_{12}) (R_4+R_5)

b. Rust *R*-gene pyramiding in confection sunflower

HA-R6 (new *R*-gene)

New confection line 1 (R_2) New confection line 2 (R_4) New confection line 3 (R_5)

A sample of gene pyramiding with marker-assisted selection

HA-R3 × RHA 464 $(R_4R_4r_{12}r_{12})$, $(r_4r_4R_{12}R_{12})$ $(R_4 r_4 \dot{R}_{12} r_{12})$ F_{2} Segregating Screen a large population with DNA markers Select homozygous F₃ $(R_4 R_4 R_{12} R_{12})$

Acknowledgment

Angelia Hogness Megan Ramsett Marjorie Olson Hannah Worral

National Sunflower Association North Dakota Department of Agriculture

