Stalk and Seed Desiccation as Independent Processes and their Significance to Mitigation of Yield Losses Caused by Dectes texanus

J.P. Michaud Department of Entomology Kansas State University

Biology of Dectes texanus

 one generation per year, but emergence protracted and adults long-lived

both soybean and sunflower are infested

 cultivated sunflower is THE preferred host (best food for larvae AND adults)

 stalk boring does not impact yield, but end-of-season girdling induces lodging

Thus, our research has focused on factors affecting the onset of larval girdling behavior within stalks

Cultural management of *D. texanus* through control of plant size

Stalk diameter affects losses to *D. texanus* in at least 3 ways...

1. Larger stalks are stronger

2. Larvae are limited to 1 inch diameter girdle

- Plant size can be manipulated by plant spacing
- Yield is relatively independent of plant population (10,000 – 20,000 ppa)

3. Slender stalks desiccate faster than stout ones

Because the surface area : volume ratio of a cylinder increases rapidly with decreasing radius

Dectes girdling as a function of no. plants / row, Sept. 5, 2006

<u>Summer 2010</u>: High rainfall in August followed by cool temperatures in September led to wet soil conditions during the period of crop maturity

<u>Summer 2010</u>: High rainfall in August followed by cool temperatures in September led to wet soil conditions during the period of crop maturity

<u>Cultivar</u>	<u>% stalks</u>	<u>brown Sept. 7</u>	<u>% stalks bro</u>	wn Sept. 13
T-665		0	1	
369DM		2	10	
378NS		<1	5	
		7.0		/100
Seed moisture (%):		1.2		1 Aur
		8.1		A NO POR
		6.0		

Stalk moisture as a function of basal girth

Stalk moisture post-maturity is a function of TWO processes

Stalk strength as a function of proportion girdled

Girdling explained 1/3 of the variation in adjusted stalk breakage force.

Girdling as a function of stalk moisture

All larvae had sealed their tunnels with frass, i.e., they had finished girdling

Only <u>20%</u> of larvae completed girdles -> <u>17%</u> did not girdle at all.

Mean stalk moisture for completed girdles was 52% Mean stalk moisture for non-girdling larvae was 70%

Conclusions:

- High soil moisture delays girdling without affecting seed moisture
 The longer girdling is delayed, the longer
- 2. The longer girdling is delayed, the less likely it is to be completed.

<u>Not-so-bad Scenario:</u> Larger plants + moderate soil moisture

Time

<u>High soil moisture (2008, 2009, 2010):</u> Stalk desiccation and girdling are delayed

What we are still trying to quantify:

- 1) How stalks desiccate as a function of their diameter
- 2) How much the stay-green trait delays stalk desiccation

Questions ?

