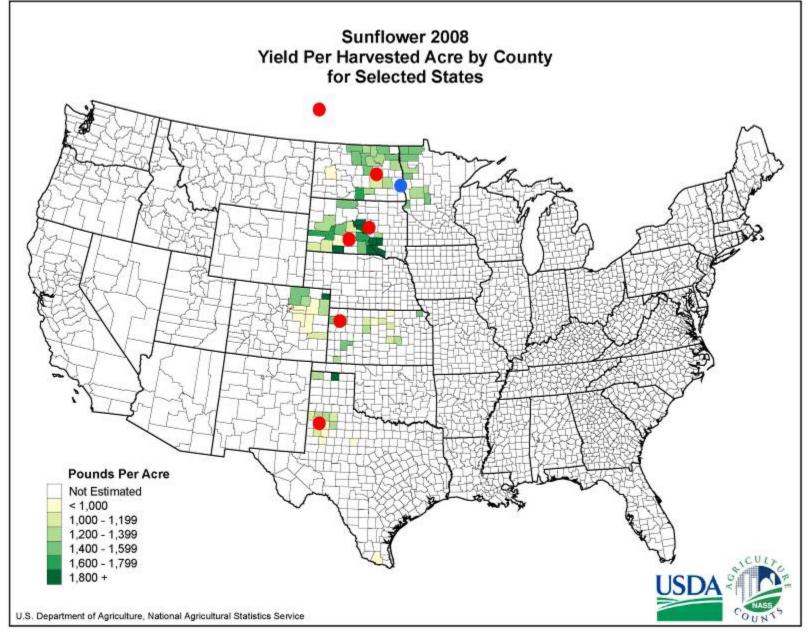
Advances in breeding at USDA

Dr. Brent Hulke Research Geneticist

List of traits studied


- Work is mostly in oilseed with some ventures into confection
- Disease resistance
 - Sclerotinia resistance
 - Downy mildew resistance mostly stacking with Sclerotinia and other traits
 - Rust resistance stacked with Sclerotinia resistance
 - Early work on Verticillium resistance (pending results from Sam Markell and associates on VCGs)

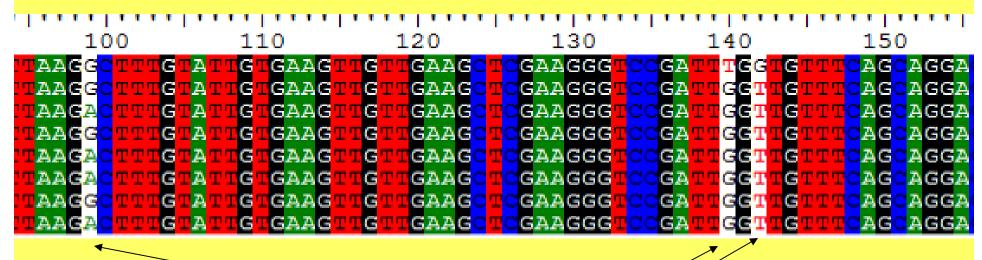
List of traits studied

- Insect resistance (now in winter nursery)
 - Banded sunflower moth resistance
 - Red sunflower seed weevil resistance
 - Sunflower moth resistance
 - Stem weevil resistance
- Low Saturated fat
- Diversification of sunflower germplasm
- Perennial sunflower as a bird trap crop

Testcross Yield Trial Sites, USDA-ARS, 2010

New Releases

- Still in the process of looking over multiple year data set, increasing seed in Chile
- Releases may include lines with Sclerotinia resistance, HO, Phomopsis resistance, and IMI (old gene)



SNP markers

- Much progress in 1 year.
- Data set for 10,000 SNPs should be available shortly.
- First project: Sclerotinia stalk rot resistance using AM (association mapping) approach
- Development of a unified BeadXpress assay for key traits?

SNP example

Arabidopsis thaliana EIN2 (Ethylene Insensitive 2) homologus gene sequences in cultivated Helianthus annuus lines

Trait Bead Assay

- I propose we develop a "trait bead" which includes SNPs that are significantly associated with traits of interest
 - Use in marker assisted breeding
 - Allow us to study the breeding value of individual plants before going to the field
 - Breeding value assessment depends on the type of trait of interest
 - Multiples of 48 markers allowed in a single test

Traits of interest

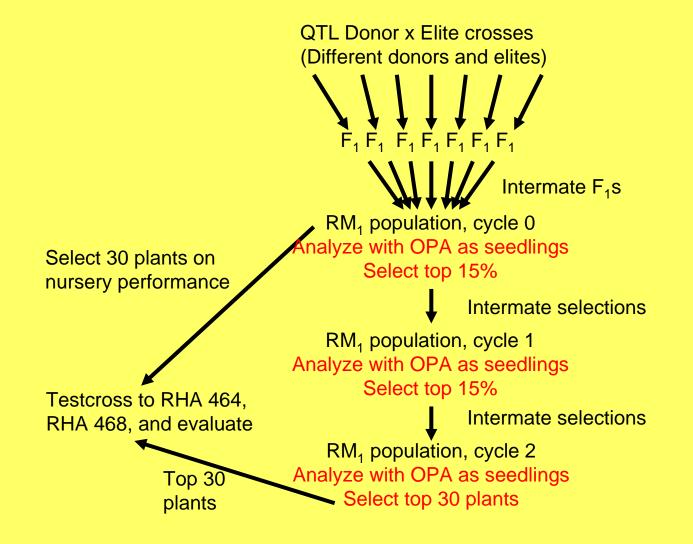
- Single gene
 - Disease resistance
 - Downy mildew
 - Sunflower rust
 - Verticillium wilt
 - Herbicide resistance
 - High oleic
 - Insect resistance???

- Many genes
 - Disease resistance
 - Phomopsis
 - Sclerotinia stalk rot
 - Sclerotinia head rot
 - Insect resistance???
 - Yield
 - Oil content
 - Confection v. Oilseed

Single gene traits and Many gene (quantitative) traits require different applications of SNP technology

Single genes and SNPs

- Breeder's assumptions:
 - Complete heritability: presence/absence in direct test of a trait (like GC test for HO)
 - A marker would provide information on a plant months before a progeny test is possible
- Preferred strategy: produce an F2 or F3 population of plants, analyze young plants with SNPs individually, keep homozygotes for selection for yield, oil, etc., discard others
- Allows breeder to develop a larger F2 population and conduct selection for "must haves" first.


Multiple genes and SNPs

- Breeders' assumptions:
 - Trait has low to moderate heritability and unknown number of genes responsible
 - Even with markers, we still do not know every gene responsible (marker x background effects)
- Methods of using markers for selection of this trait type are diverse and not as straightforward as single genes.

Methods for multi-gene traits

- QTL introgression: put all genes in the line of interest by backcrossing. Not efficient
- Methods that increase <u>frequency</u> of QTL in lines rather than making "perfect" stack
 - Allow you to take advantage of what you don't know
 - MARS: Use many (10-50) trait-specific markers, assign breeding values to them, genotype lines in populations and keep top "X"%
 - Genomewide selection: Use random markers (~1000), model random markers with field data, use markers to select top "X"% of populations.

MARS example - Sclerotinia

Table 1 in Eathington et al.

Comparison of multiple trait index values following one year of MARS and conventional selection.

Year	# of populations	Conventional selection (2 seasons)	MARS (3 seasons)
2002	79	0.63	1.10
2003	97	0.25	0.97
2004	72	0.76	1.62
All	248	0.50	1.18

Multi-gene traits: Guides for breeders

- <u>Breeding for quantitative traits in plants.</u>
 By Rex Bernardo. 2010 Stemma Press.
 <u>www.stemmapress.com</u>
- Eathington et al. 2007. Molecular markers in a commercial breeding program. Crop Science 47(S3) S154-S163 (part of International Plant Breeding Symposium proceedings)

Thanks!

- NSA / sunflower growers
- National Sclerotinia Initiative

- Kathy Grady (SD), Rob Aiken (KS), and Calvin Trostle (TX) for helping with insect yield trials
- Dawn Gustafson and staff, for assistance with Okaton; Joel Schafer with winter nursery (Chile)
- Dana Weiskopf, Arun Jani, Zahirul Talukder, Mikey Kantar, and Anitha Chirumamilla
- Undergrad students Alex Ranz, Angie Rossman, Zac Liestman, and Fran Bouret