# Ecology of *Dectes texanus* on sunflowers and novel tactics for mitigating yield losses

J.P. Michaud Kansas State University



#### Dectes texanus - Background Information

- One generation per year, skewed emergence, long-lived adults
- No effective biological or chemical controls
- No measurable impact of larval feeding on plant productivity
- Unique 'girdling' behavior of larvae causes pre-harvest lodging
- Even though commercial fields may be 80-90 % infested, infestation of wild *H. annuus* is extremely rare



#### Stalk diameter matters !

## Maximum girdling radius of *Dectes* larvae is ~ 0.5 inches









**PLUS** – large stalks get girdled later

Cultural Management 101: (oilseed SF's grown without irrigation)

#### Reduce plant populations to increase plant size

 various studies show little change in yield between 10,000 – 20,000 plants per acre

seed treatments improve stand establishment

• no oil penalty for large flowers unless > 9-10 inches

 best oil content is obtained with hot dry weather during seed fill – the same conditions that trigger early girdling by *D. texanus*



# Rainfall at Hays, 2006 versus 2007



# Daily mean ambient temperatures at Hays, 2006 versus 2007



#### **Dectes girdling as a function of no. plants/row on Aug. 13, 2006**



#### Dectes girdling as a function of no. plants / row, Sept. 5



No. plants per row

Assumption: stalk desiccation triggers girdling Harvest date – determined by seed moisture content Girdling date – determined by stalk moisture content HYPOTHESIS:



### Hypothesis: Onset of girdling is triggered by stalk desiccation

Q1: How might we accelerate desiccation of seed ?

Q2: How might we delay the desiccation of stalks ?

Avenues we are exploring :

 light irrigation pulse after crop maturity (should delay girdling, but not seed drying)

 'stay-green' stalks (should extend the period of larval feeding and delay girdling until after harvest is complete)

BUT – wild sunflowers are almost completely resistant to *D. texanus* WHY ?

## Resistance to *D. texanus* in wild *H. annuus*

Infestation rate of wild plants ~ 0.1 %

What is the nature of resistance?

Antixenosis versus Antibiosis

We caged mated *D. texanus* females on field-grown plants for 48h – 1<sup>st</sup> wild *H. annuus*, 2<sup>nd</sup> cultivated *H. annuus* 

# Resistance to *D. texanus* in wild *H. annuus*



# Resistance to *D. texanus* in wild *H. annuus*

|                                                                                           | Wild       | Cultivated |             |
|-------------------------------------------------------------------------------------------|------------|------------|-------------|
| Force required to puncture petiole with pointed probe (kg)                                | 1.3 ± 0.05 | 0.8 ± 0.05 | (60% more)  |
| Percent water content                                                                     | 86.5 ± 0.7 | 92.6 ± 0.3 | (6% less)   |
| Weight of resin exuded from<br>severed petiole after 10 min<br>(gm / cm petiole diameter) | 4.2 ± 0.17 | 1.0 ± 0.07 | (400% more) |

<u>Conclusion:</u> We have inadvertently bred for susceptibility to *D. texanus* in cultivated varieties

# Tactics for mitigating losses to D. texanus

#### 1. Cultural Management

- plant population
- limited late-season irrigation
- 2. Plant Breeding



stay-green stalks
transfer of resistance traits from wild plants

Further research is required to evaluate and integrate these tactics

# **QUESTIONS**?